On Symmetry Properties of a Class of Constitutive Models in Two-Dimensional Nonlinear Elastodynamics

Alexei F. Cheviakov

University of Saskatchewan, Saskatoon, Canada

December 08, 2012
Outline

1 Introduction
 - Material Picture. Notation
 - Governing Equations for Hyperelastic Materials
 - Constitutive Relations

2 Ciarlet-Mooney-Rivlin Solids in Two Dimensions
 - Details of the Model
 - Reduction of Number of Parameters

3 Symmetry classification
 - General 2D case
 - Traveling Wave Coordinates
 - Examples of Exact Solutions

4 Conclusions and Open Problems
Collaborators

J.-F. Ganghoffer, LEMTA - ENSEM, Université de Lorraine, Nancy, France
\[\frac{\partial u}{\partial x} \equiv u_x. \]
The actual position \(x = \phi(X, t) \) of a material point labeled by \(X \in \Omega_0 \) at time \(t \) is given by
\[
x_i = \phi_i(X, t).
\]

Coordinates \(X \) in the reference configuration are commonly referred to as Lagrangian coordinates, and actual coordinates \(x \) as Eulerian coordinates. The deformed body occupies an Eulerian domain \(\Omega = \phi(\Omega_0) \subset \mathbb{R}^3 \) (Fig. 1). The velocity of a material point is given by
\[
v(X, t) = \frac{dx}{dt} \equiv \frac{d\phi}{dt}.
\]

The mapping \(\phi \) must be sufficiently smooth (the regularity conditions depending on the particular problem). The Jacobian matrix of the coordinate transformation is given by the deformation gradient
\[
F(X, t) = \nabla \phi,
\]
(1) which is an invertible matrix with components
\[
F_{ij} = \frac{\partial \phi_i}{\partial X_j} = F_{ij}.
\]
(2)

(Throughout the paper, we use Cartesian coordinates and flat spacetime metric tensor \(g_{ij} = \delta_{ij} \), therefore indices of all tensors can be raised or lowered freely as needed.) The transformation satisfies the orientation preserving condition
\[
J = \det F > 0.
\]

Forces and stress tensors
By the well-known Cauchy theorem, the force (per unit area) acting on a surface element \(S \) within or on the boundary of the solid body is given in the Eulerian configuration by
\[
t = \sigma n,
\]
where \(n \) is a unit normal, and \(\sigma = \sigma(X, t) \) is Cauchy stress tensor (see Fig. 1). The Cauchy stress tensor is symmetric:
\[
\sigma = \sigma^T,
\]
which is a consequence of the conservation of angular momentum. For an elastic medium undergoing a smooth deformation under the action of prescribed surface and volumetric forces, the existence and uniqueness of the Cauchy stress \(\sigma \) follows from the conservation of momentum (cf. [29, Section 2.2]).

The force acting on a surface element \(S_0 \) in the reference configuration is given by the stress vector
\[
T = PN,
\]
where \(P \) is the first Piola–Kirchhoff tensor, related to the Cauchy stress tensor through
\[
P = J \sigma F - T.
\]
(3)

In (3), \((F - T)_{ij} \equiv (F - 1)_{ji} \) is the transpose of the inverse of the deformation gradient.

Hyperelastic materials
A hyperelastic (or Green elastic) material is an ideally elastic material for which the stress–strain relationship follows from a strain energy density function; it is the material model most suited to the analysis of elastomers. In general, the response of an elastic material is given in terms of the first Piola–Kirchhoff stress tensor by
\[
P = P(X, F).
\]

A hyperelastic material assumes the existence of a scalar valued volumetric strain energy function \(W = W(X, F) \) in the reference configuration, encapsulating all information regarding the material behavior, and related to the stress tensor through
\[
P_{ij} = \rho_0 \frac{\partial W}{\partial F_{ij}},
\]
(4)
where \(\rho_0 = \rho_0(X) \) is the time-independent body density in the reference configuration. The actual density in Eulerian coordinates \(\rho = \rho(X, t) \) is time-dependent and is given by
\[
\rho = \rho_0 / J.
\]
The actual position \(x \) of a material point labeled by \(X \) in \(\Omega_0 \) at time \(t \) is given by:

\[
x = \phi(X, t),
\]

\[
x_i = \phi_i(X, t).
\]

Coordinates \(X \) in the reference configuration are commonly referred to as Lagrangian coordinates, and actual coordinates \(x \) as Eulerian coordinates. The deformed body occupies an Eulerian domain \(\Omega = \phi(\Omega_0) \subset \mathbb{R}^3 \) (Fig. 1). The velocity of a material point \(X \) is given by:

\[
v(X, t) = \frac{d}{dt} x = \frac{d}{dt} \phi(X, t)\]

The mapping \(\phi \) must be sufficiently smooth (regularity conditions depending on the particular problem). The Jacobian matrix of the coordinate transformation is given by the deformation gradient

\[
F(X, t) = \nabla \phi, \quad (1)
\]

which is an invertible matrix with components

\[
F_{ij} = \frac{\partial \phi_i}{\partial X_j} = F_{ji}.
\]

(2)

(Throughout the paper, we use Cartesian coordinates and flat spacetime metric tensor \(g_{ij} = \delta_{ij} \), therefore indices of all tensors can be raised or lowered freely as needed.) The transformation satisfies the orientation-preserving condition

\[
J = \det F > 0.
\]

Forces and stress tensors

By the well-known Cauchy theorem, the force (per unit area) acting on a surface element \(S \) within or on the boundary of the solid body is given in the Eulerian configuration by

\[
t = \sigma n,
\]

where \(n \) is a unit normal, and \(\sigma = \sigma(x, t) \) is the Cauchy stress tensor (see Fig. 1). The Cauchy stress tensor is symmetric:

\[
\sigma = \sigma^T,
\]

which is a consequence of the conservation of angular momentum. For an elastic medium undergoing a smooth deformation under the action of prescribed surface and volumetric forces, the existence and uniqueness of the Cauchy stress \(\sigma \) follows from the conservation of momentum (cf. [29, Section 2.2]). The force acting on a surface element \(S_0 \) in the reference configuration is given by the stress vector

\[
T = PN,
\]

where \(P \) is the First Piola–Kirchhoff tensor, related to the Cauchy stress tensor through

\[
P = J \sigma F^{-T}.
\]

(3)

In (3), \((F^{-T})_{ij} \equiv (F^{-1})_{ji} \) is the transpose of the inverse of the deformation gradient.

Hyperelastic materials

A hyperelastic (or Green elastic) material is an ideally elastic material for which the stress–strain relationship follows from a strain energy density function; it is the material model most suited to the analysis of elastomers. In general, the response of an elastic material is given in terms of the First Piola–Kirchhoff stress tensor by

\[
P = P(X, F).
\]

A hyperelastic material assumes the existence of a scalar valued volumetric strain energy function \(W = W(X, F) \) in the reference configuration, encapsulating all information regarding the material behavior, and related to the stress tensor through

\[
P_{ij} = \rho_0 \frac{\partial W}{\partial F_{ij}}, \quad (4)
\]

where \(\rho_0 = \rho_0(X) \) is the time-independent body density in the reference configuration. The actual density in Eulerian coordinates \(\rho = \rho(X, t) \) is time-dependent and is given by

\[
\rho = \frac{\rho_0}{J}.
\]
The actual position x of a material point labeled by $X \in \Omega_0$ at time t is given by $x = \phi(X, t)$, $x_i = \phi_i(X, t)$.

Coordinates X in the reference configuration are commonly referred to as Lagrangian coordinates, and actual coordinates x as Eulerian coordinates. The deformed body occupies an Eulerian domain $\Omega = \phi(\Omega_0) \subset \mathbb{R}^3$ (Fig. 1). The velocity of a material point X is given by $v(X, t) = d\phi/dt \equiv d\phi_i/dt$.

The mapping ϕ must be sufficiently smooth (the regularity conditions depending on the particular problem). The Jacobian matrix of the coordinate transformation is given by the deformation gradient
\[F(X, t) = \nabla \phi, \quad (1) \]
which is an invertible matrix with components
\[F_{ij} = \frac{\partial \phi_i}{\partial X_j} = F_{ij}. \quad (2) \]

(Throughout the paper, we use Cartesian coordinates and flat space metric tensor $g_{ij} = \delta_{ij}$, therefore indices of all tensors can be raised or lowered freely as needed.) The transformation satisfies the orientation-preserving condition $J = det F > 0$.

Forces and stress tensors

By the well-known Cauchy theorem, the force (per unit area) acting on a surface element S within or on the boundary of the solid body is given in the Eulerian configuration by $t = \sigma n$, where n is a unit normal, and $\sigma = \sigma(x, t)$ is Cauchy stress tensor (see Fig. 1). The Cauchy stress tensor is symmetric: $\sigma = \sigma^T$, which is a consequence of the conservation of angular momentum. For an elastic medium undergoing a smooth deformation under the action of prescribed surface and volumetric forces, the existence and uniqueness of the Cauchy stress σ follows from the conservation of momentum (cf. [29, Section 2.2]). The force acting on a surface element S_0 in the reference configuration is given by the stress vector $T = P N$, where P is the first Piola–Kirchhoff tensor, related to the Cauchy stress tensor through $P = J \sigma F - T$.

(3)

In (3), $(F - T)_{ij} \equiv (F - 1)_{ji}$ is the transpose of the inverse of the deformation gradient.

Hyperelastic materials

A hyperelastic (or Green elastic) material is an ideally elastic material for which the stress–strain relationship follows from a strain energy density function; it is the material model most suited to the analysis of elastomers. In general, the response of an elastic material is given in terms of the first Piola–Kirchhoff stress tensor by $P = P(X, F)$.

A hyperelastic material assumes the existence of a scalar valued volumetric strain energy function $W = W(X, F)$ in the reference configuration, encapsulating all information regarding the material behavior, and related to the stress tensor through
\[P_{ij} = \frac{\partial W}{\partial F_{ij}}, \quad P = J \sigma F - T, \quad (4) \]
where $\rho_0 = \rho_0(X)$ is the time-independent body density in the reference configuration. The actual density in Eulerian coordinates $\rho = \rho(X, t)$ is time-dependent and is given by $\rho = \rho_0/J$.

Boundary force (per unit area) in Eulerian configuration: $t = \sigma n$.

Boundary force (per unit area) in Lagrangian configuration: $T = PN$.

$\sigma = \sigma(x, t)$ is the Cauchy stress tensor.

$P = J\sigma F^{-T}$ is the first Piola-Kirchhoff tensor.
Fig. 1. Material and Eulerian coordinates.

Material picture

- **Density** in reference configuration: \(\rho_0 = \rho_0(X) \) (time-independent).
- Density in actual configuration:

\[
\rho = \rho(X, t) = \rho_0 / J.
\]
Governing Equations for Hyperelastic Materials

Equations of motion (no dissipation, purely elastic setting):

\[
\rho_0 \ddot{x} = \text{div}(X) P + \rho_0 R,
\]

1. \(R = R(X, t) \): total body force per unit mass.
2. \(\text{div}(X) P = \frac{\partial P_{ij}}{\partial X^j} \).

Cauchy stress tensor symmetry (conservation of angular momentum):

\[
FP^T = PF^T \iff \sigma = \sigma^T.
\]

The first Piola-Kirchhoff stress tensor:

\[
P = \rho_0 \frac{\partial W}{\partial F}, \quad P_{ij} = \rho_0 \frac{\partial W}{\partial F_{ij}}.
\]

- \(W = W(X, F) \): a scalar strain energy density function.
Isotropic Homogeneous Hyperelastic Materials

- Strain energy density W depends only on certain matrix invariants:
 \[W = U(l_1, l_2, l_3). \]

- For the left Cauchy-Green strain tensor $B = FF^T$,
 \[l_1 = \text{Tr} B = F^i_k F^i_k, \]
 \[l_2 = \frac{1}{2}[(\text{Tr} B)^2 - \text{Tr}(B^2)] = \frac{1}{2}(l_1^2 - B^{ik}B^{ki}), \]
 \[l_3 = \det B = J^2. \]
Strain Energy Density for Isotropic Homogeneous Hyperelastic Materials

Isotropic Homogeneous Hyperelastic Materials

- Strain energy density W depends only on certain matrix invariants:

$$W = U(I_1, I_2, I_3).$$

Table 1: Neo-Hookean and Mooney-Rivlin constitutive models

<table>
<thead>
<tr>
<th>Type</th>
<th>Neo-Hookean</th>
<th>Mooney-Rivlin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>$W = aI_1$, $a > 0$.</td>
<td>$W = aI_1 + bI_2$, $a, b > 0$</td>
</tr>
<tr>
<td>Generalized</td>
<td>$W = a\bar{I}_1 + c(J - 1)^2$, $a, c > 0$.</td>
<td>$W = a\bar{I}_1 + b\bar{I}_2 + c(J - 1)^2$, $a, b, c > 0$</td>
</tr>
<tr>
<td>Generalized (Ciarlet)</td>
<td>$W = aI_1 + \Gamma(J)$, $\Gamma(q) = cq^2 - d \log q$, $a, c, d > 0$.</td>
<td>$W = aI_1 + bI_2 + \Gamma(J)$, $\Gamma(q) = cq^2 - d \log q$, $a, b, c, d > 0$</td>
</tr>
</tbody>
</table>
Isotropic Homogeneous Hyperelastic Materials

- Strain energy density W depends only on certain **matrix invariants**:
 \[W = U(l_1, l_2, l_3). \]

Example: the Neo-Hookean Case

- Strain energy density: $W = a l_1$, $a = \text{const}$.
- Equations of motion are linear and decoupled:
 \[(x^k)_{tt} = a \left(\frac{\partial^2}{\partial(X^1)^2} + \frac{\partial^2}{\partial(X^2)^2} + \frac{\partial^2}{\partial(X^3)^2} \right) x^k, \]
 $k = 1, 2, 3$.
Ciarlet-Mooney-Rivlin solids in 2D: Governing equations

General equations:

\[\rho_0 \mathbf{x}_{tt} = \text{div}(\mathbf{x}) \mathbf{P} + \rho_0 \mathbf{R}, \]

\[\mathbf{FP}^T = \mathbf{PF}^T, \]

\[\mathbf{P} = \rho_0 \frac{\partial W}{\partial \mathbf{F}}. \]

Assumptions:

- **Two-dimensional**: \(x^{1,2} = x^{1,2}(X^1, X^2, t) \); the third coordinate \(x^3 = X^3 \) fixed.
- **Ciarlet-Mooney-Rivlin constitutive relation (4 parameters)**:

\[W = a l_1 + b l_2 - c l_3 - \frac{1}{2} d \log l_3, \quad a > 0, \quad b, c, d \geq 0, \quad (4) \]

\[\mathbf{F} = \begin{bmatrix} F_{11} & F_{12} & 0 \\ F_{21} & F_{22} & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \rho_0 (x^1)_{tt} - \frac{\partial P^{11}}{\partial X^1} - \frac{\partial P^{12}}{\partial X^2} - \rho_0 R^1 = 0, \]

\[\rho_0 (x^2)_{tt} - \frac{\partial P^{21}}{\partial X^1} - \frac{\partial P^{22}}{\partial X^2} - \rho_0 R^2 = 0. \]
Ciarlet-Mooney-Rivlin constitutive relation:

\[W = a l_1 + b l_2 - c l_3 - \frac{1}{2} d \log l_3, \quad a > 0, \quad b, c, d \geq 0. \]

Equivalence Transformations (a subgroup):

\[
\begin{align*}
\tilde{t} &= e^{\varepsilon_2} t + \varepsilon_1, \quad \tilde{x}^1 = e^{2\varepsilon_2} x^1, \quad \tilde{x}^2 = e^{2\varepsilon_2} x^2, \\
\tilde{X}^1 &= e^{\varepsilon_3} (X^1 \cos \varepsilon_7 - X^2 \sin \varepsilon_7) + \varepsilon_4, \quad \tilde{X}^2 = e^{\varepsilon_3} (X^1 \sin \varepsilon_7 + X^2 \sin \varepsilon_7) + \varepsilon_5, \\
\tilde{\rho}_0 &= e^{\varepsilon_6} \rho_0, \quad \tilde{R}^1 = R^1, \quad \tilde{R}^2 = R^2, \\
\tilde{a} &= -b + e^{2\varepsilon_3 - 2\varepsilon_2} (a + b), \quad \tilde{b} = b, \quad \tilde{c} = -b + e^{4\varepsilon_3 - 6\varepsilon_2} (b + c), \quad \tilde{d} = e^{2\varepsilon_2} d.
\end{align*}
\]
Ciarlet-Mooney-Rivlin constitutive relation:

\[W = aI_1 + bl_2 - cl_3 - \frac{1}{2}d \log l_3, \quad a > 0, \quad b, c, d \geq 0. \]

Principal Result 1:

- The model essentially depends on **three constitutive parameters**:
 \[A = 2(a + b) \geq 0, \quad B = 2(b + c) \geq 0, \quad d. \]

- The two-dimensional first Piola-Kirchhoff stress tensor is given by
 \[\mathbf{P}_2 = \rho_0 \left[A \mathbf{F}_2 + B J \mathbf{C}_2 - \frac{d}{J} \mathbf{C}_2 \right], \]

where

\[\mathbf{F}_2 = \begin{bmatrix} F_1^1 & F_2^1 \\ F_1^2 & F_2^2 \end{bmatrix}, \quad \mathbf{C}_2 = \begin{bmatrix} F_2^2 & -F_1^2 \\ -F_2^1 & F_1^1 \end{bmatrix}, \quad \mathbf{F}_2 = \nabla_{(\chi)} \mathbf{x}. \]
Governing equations:

- **No forcing**: \(R^1 = R^2 = 0 \).
- **Dynamic equations**:

\[
\begin{align*}
\rho_0(x^1)_{tt} - \frac{\partial P^{11}}{\partial X^1} - \frac{\partial P^{12}}{\partial X^2} &= 0, \\
\rho_0(x^2)_{tt} - \frac{\partial P^{21}}{\partial X^1} - \frac{\partial P^{22}}{\partial X^2} &= 0.
\end{align*}
\]

- **C-M-R constitutive relation**:

\[
P_2 = \rho_0 \left[A F_2 + B J C_2 - \frac{d}{J} C_2 \right],
\]

\[
F_2 = \begin{bmatrix} F^1_1 & F^1_2 \\ F^2_1 & F^2_2 \end{bmatrix}, \quad C_2 = \begin{bmatrix} F^2_2 & -F^2_1 \\ -F^1_2 & F^1_1 \end{bmatrix},
\]

\[
F_2 = \nabla(x) x.
\]
Table 1: Point symmetry classification for the two-dimensional Ciarlet-Mooney-Rivlin models with zero forcing and $\rho_0 = \text{const} > 0$.

<table>
<thead>
<tr>
<th>Case</th>
<th>Point symmetries</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td>$Y_1 = \frac{\partial}{\partial t}$, $Y_2 = \frac{\partial}{\partial x_1}$, $Y_3 = \frac{\partial}{\partial x_2}$, $Y_4 = \frac{\partial}{\partial x_1}$, $Y_5 = \frac{\partial}{\partial x_2}$, $Y_6 = t \frac{\partial}{\partial x_1}$, $Y_7 = t \frac{\partial}{\partial x_2}$, $Y_8 = x_2 \frac{\partial}{\partial x_1} - x_1 \frac{\partial}{\partial x_2}$, $Y_9 = x_2 \frac{\partial}{\partial x_1} - x_1 \frac{\partial}{\partial x_2}$, $Y_{10} = t \frac{\partial}{\partial t} + x_1 \frac{\partial}{\partial x_1} + x_2 \frac{\partial}{\partial x_2} + x_1 \frac{\partial}{\partial x_1} + x_2 \frac{\partial}{\partial x_2}$</td>
</tr>
<tr>
<td>$A = 0$, B, d arbitrary</td>
<td>$Y_{11} = f_1(x^2) \frac{\partial}{\partial x_1}$, $Y_{12} = \left(\frac{\partial}{\partial x_2} f_2(x^1, x^2) \right) \frac{\partial}{\partial x_1} - \left(\frac{\partial}{\partial x_1} f_2(x^1, x^2) \right) \frac{\partial}{\partial x_2}$, $f_1(x^2)$, $f_2(x^1, x^2)$ are arbitrary functions</td>
</tr>
<tr>
<td>$A = d = 0$</td>
<td>$Y_{13} = t \frac{\partial}{\partial t} + x_1 \frac{\partial}{\partial x_1}$</td>
</tr>
<tr>
<td>B arbitrary</td>
<td>$Y_{14} = x^1 \frac{\partial}{\partial x_1}$</td>
</tr>
<tr>
<td>$A = B = 0$, d arbitrary</td>
<td>$Y_{15} = x^1 \frac{\partial}{\partial x_1}$</td>
</tr>
</tbody>
</table>
Traveling Wave Ansatz Along X^1

Traveling Wave Ansatz

- **No forcing:** $R^1 = R^2 = 0$.

- **Ansatz:**

 $$x^i(X^1, X^2, t) = w^i(z, X^2), \quad z = X^1 - st, \quad i = 1, 2;$$

 $$\rho_0 = \rho_0(X^2).$$

- s is the constant wave speed.
<table>
<thead>
<tr>
<th>#</th>
<th>Case</th>
<th>Point symmetries</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>General</td>
<td>$Y_1 = \frac{\partial}{\partial z}, Y_2 = \frac{\partial}{\partial w_1}, Y_3 = \frac{\partial}{\partial w_2}, Y_4 = w^2 \frac{\partial}{\partial w_1} - w^1 \frac{\partial}{\partial w_2}$</td>
</tr>
<tr>
<td>2</td>
<td>$\rho_0(X^2) = (X^2 + q_1)^{q_2}, q_1, q_2 = \text{const}, q_2 \neq 0, A, B, d, s \text{ arbitrary}$</td>
<td>$Y_1, Y_2, Y_3, Y_4,$ $Y_5 = z \frac{\partial}{\partial z} + (X^2 + q_1) \frac{\partial}{\partial x^2} + w^1 \frac{\partial}{\partial w_1} + w^2 \frac{\partial}{\partial w_2}$</td>
</tr>
<tr>
<td>3a</td>
<td>$\rho_0(X^2) = \exp(q_1 X^2), q_1 = \text{const} \neq 0, A, B, d, s \text{ arbitrary}$</td>
<td>$Y_1, Y_2, Y_3, Y_4,$ $Y_6 = \frac{\partial}{\partial x^2}$</td>
</tr>
<tr>
<td>3b</td>
<td>$\rho_0(X^2) = \exp(q_1 X^2), q_1 = \text{const} \neq 0, A, d \text{ arbitrary, } B = 0, s^2 = A$</td>
<td>$Y_{\infty} = -\left(\frac{1}{q_1} \frac{d}{dz} f_1(z)\right) \frac{\partial}{\partial x^2} + f_1(z) \frac{\partial}{\partial z}$</td>
</tr>
<tr>
<td>4a</td>
<td>$\rho_0(X^2) > 0 \text{ arbitrary, } A, B \text{ arbitrary, } d = 0, s^2 = A$</td>
<td>$Y_1, Y_2, Y_3, Y_4,$ $Y_7 = z \frac{\partial}{\partial z} + w^1 \frac{\partial}{\partial w_1} + w^2 \frac{\partial}{\partial w_2}, Y_8 = \left(\rho_0 \int \frac{1}{\rho_0} dX^2\right) \frac{\partial}{\partial x^2}, Y_{\infty} = f_2(z) \rho_0 \frac{\partial}{\partial x^2}, f_2(z) \text{ is an arbitrary function}$</td>
</tr>
<tr>
<td>4b</td>
<td>$\rho_0(X^2) > 0 \text{ arbitrary, } A, d \text{ arbitrary, } B = 0, s^2 = A$</td>
<td>$Y_1, Y_2, Y_3, Y_4,$ $Y_9 = z \frac{\partial}{\partial z}$</td>
</tr>
<tr>
<td>5a</td>
<td>$\rho_0 = \text{const}$ $A, B, d, s \text{ arbitrary}$</td>
<td>$Y_1, Y_2, Y_3, Y_4, Y_5(q_1 = 0), Y_6,$ $Y_{10} = X^2 \frac{\partial}{\partial z} - \frac{Az}{A-s^2} \frac{\partial}{\partial x^2}$</td>
</tr>
<tr>
<td>5b</td>
<td>$\rho_0 = \text{const, } s^2 = A,$ $A, B, d \text{ arbitrary}$</td>
<td>$Y_1, Y_2, Y_3, Y_4, Y_5(q_1 = 0),$ $Y_{\infty} = f_3(z) \frac{\partial}{\partial x^2}, f_3(z) \text{ is an arbitrary function}$</td>
</tr>
<tr>
<td>5c</td>
<td>$\rho_0 = \text{const, } s^2 = A,$ $A, d \text{ arbitrary, } B = 0$</td>
<td>$Y_1, Y_2, Y_3, Y_4, Y_5(q_1 = 0), Y_9, Y_{\infty}$,</td>
</tr>
</tbody>
</table>
Examples of Exact Solutions

Example:

- **Case**: $\rho_0 = \text{const}$, $R^1 = R^2 = 0$, $A = s^2$, $d = s^2 + B$.

- **A basic solution**:

 \[
 w^1 = z \iff x^1(X^1, X^2, t) = X^1 - st, \quad w^2 = x^2(X^1, X^2, t) = X^2,
 \]

- **A symmetry-transformed solution**:

 \[
 w^1 = z \iff x^1(X^1, X^2, t) = X^1 - st, \\
 w^2 = X^2 - f(z) \iff x^2(X^1, X^2, t) = X^2 - f(X^1 - st)
 \]

- **Figure**:

 - (a) A rectangular grid in the reference configuration.
 - (b) The propagating deformation, $f(z) = -\exp(-z^2)$.
 - (c) The propagating deformation, $f(z) = -(1 + \tanh z)/2$.
Examples of Exact Solutions

- Figure 2: (a) A rectangular grid in the reference configuration. (b) The deformation corresponding to the exact solutions (44) in the actual (Euler) configuration, in the frame of the observer traveling with speed s, for the cases $f(z) = -\exp(-z^2)$ and $f(z) = -(1 + \tanh z)/2$, respectively.

One may further use equivalence transformations (36) in order to get, for example, scaled or rotated versions of solutions (44), and/or solutions corresponding to waves traveling with a different speed s.

For example, consider a traveling wave-type exact solution of the type (44) in an elastic medium with prescribed constitutive parameters A^*, B^*, d^*, propagating with speed $s^* = \sqrt{A^*}$:

$$
\begin{align*}
 x_1(X_1, X_2, t) &= X_1 - st, \\
 x_2(X_1, X_2, t) &= X_2 + \alpha \exp(-\beta(X_1 - st)^2),
\end{align*}
$$

(46)

where α, β are some fixed constants of appropriate physical dimensions. Using equivalence transformations (36) with parameters $\epsilon_2 = -\frac{1}{2} \ln p$, $\epsilon_3 = -\frac{1}{2} \ln q$, $p, q > 0$, $\epsilon_1 = \epsilon_4 = \cdots = \epsilon_8 = 0$, one arrives at an exact solution

$$
\begin{align*}
 \tilde{x}_1(\tilde{X}_1, \tilde{X}_2, \tilde{t}) &= \sqrt{\frac{q}{p}}(\tilde{X}_1 - s\sqrt{\frac{p}{q}}\tilde{t}), \\
 \tilde{x}_2(\tilde{X}_1, \tilde{X}_2, \tilde{t}) &= \sqrt{\frac{q}{p}}(\tilde{X}_2 + \alpha \exp\left[-\beta\sqrt{\frac{p}{q}}(\tilde{X}_1 - s\sqrt{\frac{p}{q}}\tilde{t})^2\right]),
\end{align*}
$$

(47)
Conclusions

- Symmetry properties of dynamic equations for 2D planar Ciarlet-Mooney-Rivlin materials were studied in:
 - The general setting;
 - Traveling wave coordinates.
- The number of essential constitutive parameters in the model were reduced through equivalence transformations.
- New traveling-wave type exact solutions were obtained in the nonlinear setting.

Open problems

- Consider important *non-planar* two-dimensional reductions (including axial symmetry), and 3D.
- Generalize to other constitutive models, in particular, models of anisotropic materials.
Some references

Some references

Thank you for attention!