Classification of local and quasi-local symmetries of nonlinear fourth-order evolution equations

Changzheng Qu

joint work with Qing Huang and Renat Zhdanov

Department of Mathematics, Northwest University, Xi'an

December 4-6, 2010
2010 CMS Winter Meeting
Outline

- Introduction
- Classification of local symmetries
- Classification of quasi-local symmetries
Lie group classification

- Sophus Lie (1881) A linear two-dimensional second-order PDE; Ovsyannikov (1959)
 A regular method based on the concept of equivalence group.

 Ibragimov (1989).

- Zhdanov, Basarab-Horwath, Lahno (2001)
 A purely algebraic approach.

 General Nonlinear Schrödinger type, nonlinear wave, nonlinear
 second-order evolution equations, nonlinear third-order
 evolution equations.

- Huang, Lahno, Qu and Zhdanov (2009-2010)
 Nonlinear Fourth-order evolution equations
Non-local symmetry

- Akhatov, Gazizov, Ibragimov and Meirmanov, Pukhnachov, Shmarev (1987) Nonlocal symmetries
- Oevel, Carillo, Schief, Lou and Hu (2003-2007) (Integrable systems)
- Roman, Ivanova, Sophocleous (1999-2007)
Some fourth-order evolution equations

- The Kuramoto-Sivashinsky (KS) equation
 \[u_t = -u_{xxxx} - u_{xx} - \frac{1}{2}u_x^2. \]

- The extended Fisher-Kolmogorov (eFK) equation
 \[u_t = -u_{xxxx} + u_{xx} - u^3 + u. \]

- The Swift-Hohenberg (SH) equation
 \[u_t = -u_{xxxx} - 2u_{xx} - u^3 + (\kappa - 1)u, \quad \kappa \in \mathbb{R}. \]

- Thin film flows
 \[u_t = -\left(u^3u_{xxx} + f(u, u_x, u_{xx})\right)_x. \]

- Thin viscous film flows
 \[u_t = -\left(f(u)u_{xxx}\right)_x + \left(g(u)u_x\right)_x, \]
How to classify

\[u_t = F(t, x, u, u_x, u_{xx}, u_{xxx})u_{xxxx} + G(t, x, u, u_x, u_{xx}, u_{xxx}) \quad (2.1) \]

into subclasses of equations enjoying rich local and nonlocal symmetries?
Local symmetry classification algorithm

- **Step 1** Compute the most general symmetry group of Eq. (2.1) together with the classifying equations for F and G. In addition, calculate the maximal local equivalence group admitted by Eq. (2.1).

- **Step 2** Based on the structure of low dimensional abstract Lie algebras, we construct all inequivalent realizations of symmetry algebras by infinitesimal operators.

- **Step 3** Inserting the canonical forms of symmetry generators into the classifying equations and solving them yield the invariant equations.

Changzheng Qu

Classification of fourth-order nonlinear evolution equations
Calculate the most general invariance group of (2.1) generated by operators of the form

\[V = \tau(t, x, u) \partial_t + \xi(t, x, u) \partial_x + \eta(t, x, u) \partial_u. \]

The operator \(V \) generates one-parameter invariance group of (2.1) iff

\[V^{(4)}|_{u_t = F_{uxxxx} + G} = 0. \]

(3.1)

In order to obtain the system of determining equations for coefficients of \(V \), we need to

- replace \(u_t \) and its differential consequences with \(F_{uxxxx} + G \) and its differential consequences in the left-hand side of (3.1), and
- split the so obtained relation by the independent variables \(u_x, u_{xx}, \ldots \)
Proposition 2.1 The most general symmetry group of (2.1) is generated by the infinitesimal operators

\[V = \tau(t)\partial_t + \xi(t, x, u)\partial_x + \eta(t, x, u)\partial_u, \]

where \(\tau, \xi \) and \(\eta \) are real-valued functions satisfying the classifying equations

\[(4\xi_u u_x + 4\xi_x - \dot{\tau})F - \tau F_t - \xi F_x - \eta F_u + (u_x \xi_x - u_x \eta_u + u_x^2 \xi_u - \eta_x)F_{ux} + (-u_{xx} \eta_u - \eta_{xx} + u_x^3 \xi_{uu} - u_x^2 \eta_{uu} - 2u_x \eta_{xx} + 2u_{xx} \xi_x + u_x \xi_{xx} + 2u_x^2 \xi_{uu} + 3u_x u_{xx} \xi_u)F_{uxx} + (-3u_x^2 \eta_{x,u,u} - \eta_{xxx} + u_x^4 \xi_{uuu} - 3u_x \eta_{xxx} + 3u_{xx} \eta_{xx} + 3u_{xxx} \xi_x + 3u_{xx}^2 \xi_u + 3u_{xx} \xi_{xx} + 3u_x^3 \xi_{xuu} + u_x \xi_{xxx} + 6u_x^2 u_{xx} \xi_{uu} - u_x^3 \eta_{uuu} + 9u_x u_{xx} \xi_{xx} - u_{xxx} \eta_u + 4u_x u_{xxx} \xi_u + 3u_x^2 \xi_{xxx} - 3u_x u_{xx} \eta_{uu})F_{uxxx} = 0, \]
\[
(-12u_x u_{xx} \eta_{xu} - u_x^4 \eta_{uuuu} + u_x \xi_{xxxx} + u_x^5 \xi_{uuuu} + 4u_x^4 \xi_{xuuu} \\
- 6u_x^2 \eta_{xxxx} + 6u_x^3 \xi_{xxxx} - 4u_{xxx} \eta_{xu} - 6u_{xx} \eta_{xxu} - 4u_x \eta_{xxxx}) \\
+ 12u_{xx}^2 \xi_{xu} - 4u_x^3 \eta_{xuu} - 3u_{xx}^2 \eta_{uu} + 4u_x^2 \xi_{xxxx} + 4u_{xx} \xi_{xxx} \\
+ 6u_{xxx} \xi_{xx} - \eta_{xxxx} - 6u_x^2 u_{xx} \eta_{uu} + 16u_x u_{xxx} \xi_{xu} - 4u_x u_{xxx} \eta_{uu} \\
+ 10u_x^2 u_{xxx} \xi_{uu} + 15u_x u_{xx}^2 \xi_{uu} + 10u_x^3 u_{xx} \xi_{uu} + 10u_x u_{xx} u_{xxx} \xi_{u} \\
+ 24u_x^2 u_{xx} \xi_{xuu} + 18u_x u_{xx} \xi_{xuu}) F + (\eta_u - \dot{\tau} - u_x \xi_u) G - \tau G_t \\
- \xi G_x - \eta G_u + (u_x \xi_x - u_x \eta_u + u_x^2 \xi_u - \eta_x) G_u_x + (-u_x \eta_u \\
- \eta_x + u_x^3 \xi_{uu} - u_x^2 \eta_{uu} - 2u_x \eta_{xxu} + 2u_{xx} \xi_x + u_x \xi_{xx} + 2u_x^2 \xi_{xxu} \\
+ 3u_x u_{xx} \xi_{uu}) G_{ux} + (-3u_x^2 \eta_{xuu} - \eta_{xxx} + u_x^4 \xi_{uuu} - 3u_x \eta_{xxu} \\
- 3u_{xx} \eta_{xu} + 3u_{xxx} \xi_x + 3u_{xx} \xi_{xx} + 3u_x^3 \xi_{xuu} + u_x \xi_{xxx} + 6u_x^2 u_{xx} \xi_{uu} \\
- u_x^3 \eta_{uuu} + 9u_x u_{xx} \xi_{xu} + 3u_{xx}^2 \xi_u - u_{xxx} \eta_u + 4u_x u_{xxx} \xi_u + 3u_x^2 \xi_{xxx} \\
- 3u_x u_{xx} \eta_{uu}) G_{uxx} - u_x \xi_t + \eta_t = 0.
\]
Theorem 2.2 (Levi)

For any finite-dimensional Lie algebra L and its radical N (the largest solvable ideal in L), there exists a semi-simple Lie subalgebra S of L such that

$$L = S \oplus N$$

where S is called the Levi factor.

Theorem 2.3 (Cartan)

Any semi-simple Lie algebra can be decomposed into a direct sum of ideals which are mutually orthogonal simple subalgebras.
There exist four types of classical Lie algebras, A_n, B_n, C_n, D_n, and five exceptional Lie algebras, G_2, F_4, E_6, E_7, E_8 which together exhaust all the simple complex Lie algebras, where the following isomorphisms hold

$$A_1 \cong B_1 \cong C_1, \quad B_2 \cong C_2, \quad A_3 \cong D_3, \quad D_2 \cong A_1 \oplus A_1.$$

- A_{n-1} ($n > 1$) has four real forms of the algebra $\mathfrak{sl}(n, \mathbb{C})$: $\mathfrak{su}(n)$, $\mathfrak{sl}(n, \mathbb{R})$, $\mathfrak{su}(p, q)$ ($p + q = n, p \geq q$), $\mathfrak{su}^*(2n)$.
- B_n ($n \geq 1$) contains two real forms of the algebra $\mathfrak{so}(2n + 1, \mathbb{C})$: $\mathfrak{so}(2n + 1)$, $\mathfrak{so}(p, q)$ ($p + q = 2n + 1, p > q$).
- C_n ($n \geq 1$) contains three real forms of the algebra $\mathfrak{sp}(n, \mathbb{C})$: $\mathfrak{sp}(n)$, $\mathfrak{sp}(n, \mathbb{R})$, $\mathfrak{sp}(p, q)$ ($p + q = n, p \geq q$).
- D_n ($n > 1$) has three real forms of the algebra $\mathfrak{so}(2n, \mathbb{C})$: $\mathfrak{so}(2n)$, $\mathfrak{so}(p, q)$ ($p + q = 2n, p \geq q$), $\mathfrak{so}^*(2n)$.
Simple Lie algebra

- G_2 has real compact form g_2 and real non-compact form g'_2 with $g_2 \cap g'_2 \cong \mathfrak{su}(2) \oplus \mathfrak{su}(2)$.
- F_4 has real compact form f_4 and two real non-compact form f'_4 and f''_4 with $f_4 \cap f'_4 \cong \mathfrak{sp}(3) \oplus \mathfrak{su}(2)$ and $f_4 \cap f''_4 \cong \mathfrak{so}(9)$.
- E_6 has real compact form e_6 and four real non-compact form e'_6, e''_6, e''''_6 and e''''''_6 with $e_6 \cap e'_6 \cong \mathfrak{sp}(4)$, $e_6 \cap e''_6 \cong \mathfrak{su}(6) \oplus \mathfrak{su}(2)$, $e_6 \cap e''''_6 \cong \mathfrak{so}(10)$ and $e_6 \cap e''''''_6 \cong e_7$.
- E_7 has real compact form e_7 and three real non-compact form e'_7, e''_7, e''''_7 with $e_7 \cap e'_7 \cong \mathfrak{su}(8)$, $e_7 \cap e''_7 \cong \mathfrak{so}(12) \oplus \mathfrak{su}(2)$, $e_7 \cap e''''_7 \cong e_6$.
- E_8 has real compact form e_8 and two real non-compact form e'_8, e''_8 with $e_8 \cap e'_8 \cong e_7 \oplus \mathfrak{su}(2)$, $e_8 \cap e''_8 \cong \mathfrak{so}(16)$.
The isomorphism for three-dimensional classical Lie algebras:
\[su(2) \cong so(3) \cong sp(1); \]
\[sl(2, \mathbb{R}) \cong su(1, 1) \cong so(2, 1) \cong sp(1, \mathbb{R}). \]

The lowest order real semi-simple Lie algebras are isomorphic to one of the following two three-dimensional algebras

\[so(3) : \quad [V_1, V_2] = V_3, \quad [V_1, V_3] = -V_2, \quad [V_2, V_3] = V_1; \]
\[sl(2, \mathbb{R}) : \quad [V_1, V_2] = 2V_2, \quad [V_1, V_3] = -2V_3, \quad [V_2, V_3] = V_1. \]
Solvable Lie algebra

For solvable Lie algebra L_n of dimension n, there exists a series of subalgebras

$$L_n \supset L_{n-1} \supset \cdots \supset L_1$$

such that each subalgebra L_i ($i = 1, \cdots, n-1$) is an ideal of L_{i+1}. This series is called the composition series of algebra L_N.

Notation: $A_{k,i} = \langle V_1, V_2, \cdots, V_k \rangle$ a k-dimensional Lie algebra V_i ($i = 1, 2, \cdots, k$) basis elements of the algebra $A_{k,i}$ i the number of the class to which $A_{k,i}$ belongs.

- One-dimensional $A_1 = \langle V_1 \rangle$
- Two-dimensional
 $A_{2.1} = \langle V_1, V_2 \rangle = A_1 \oplus A_1, [V_1, V_2] = 0$,
 $A_{2.2} = \langle V_1, V_2 \rangle, [V_1, V_2] = V_2$.
Three-dimensional decomposable Lie algebra

\[A_{3.1} = A_1 \oplus A_1 \oplus A_1 = A_{2.1} \oplus A_1, \]
\[A_{3.2} = A_{2.2} \oplus A_1. \]

Four-dimensional decomposable Lie algebra

\[A_{2.2} \oplus A_{2.2} = 2A_{2.2}, \]
\[A_{3.1} \oplus A_1 = 4A_1, \]
\[A_{3.2} \oplus A_1 = A_{2.2} \oplus 2A_1, \]
\[A_{3.i} \oplus A_1 \ (i = 3, 4, \ldots, 9). \]
Non-decomposable Lie algebra

- Three-dimensional non-decomposable Lie algebra
 \(A_{3.3} : \) \([V_2, V_3] = V_1;\)
 \(A_{3.4} : \) \([V_1, V_3] = V_1, \quad [V_2, V_3] = V_1 + V_2;\)
 \(A_{3.5} : \) \([V_1, V_3] = V_1, \quad [V_2, V_3] = V_2;\)
 \(A_{3.6} : \) \([V_1, V_3] = V_1, \quad [V_2, V_3] = -V_2;\)
 \(A_{3.7} : \) \([V_1, V_3] = V_1, \quad [V_2, V_3] = qV_2, \quad (0 < |q| < 1);\)
 \(A_{3.8} : \) \([V_1, V_3] = -V_2, \quad [V_2, V_3] = V_1;\)
 \(A_{3.9} : \) \([V_1, V_3] = qV_1 - V_2, \quad [V_2, V_3] = V_1 + qV_2, \quad (q > 0).\)

- Four-dimensional non-decomposable Lie algebra
 \(A_{4.1} : \) \([V_2, V_4] = V_1, \quad [V_3, V_4] = V_2;\)
 \(A_{4.2} : \) \([V_1, V_4] = qV_1, \quad [V_2, V_4] = V_2,\)
 \[V_3, V_4]\]
 \[= V_2 + V_3, \quad q \neq 0;\)
 \(A_{4.3} : \) \([V_1, V_4] = V_1, \quad [V_3, V_4] = V_2;\)
 \(A_{4.4} : \) \([V_1, V_4] = V_1, \quad [V_2, V_4] = V_1 + V_2,\)
 \[V_3, V_4]\]
 \[= V_2 + V_3;\)
Four-dimensional non-decomposable Lie algebra

$A_{4.5}: \quad [V_1, V_4] = V_1, \quad [V_2, V_4] = qV_2, \quad [X_3, X_4] = pX_3,$
\[-1 \leq p \leq q \leq 1, \quad pq \neq 0;\]

$A_{4.6}: \quad [V_1, V_4] = qV_1, \quad [V_2, V_4] = pV_2 - V_3,$
\quad $[V_3, V_4] = V_2 + pV_3, \quad q \neq 0, \quad p \geq 0;$

$A_{4.7}: \quad [V_2, V_3] = V_1, \quad [V_1, V_4] = 2V_1, \quad [V_2, V_4] = V_2,$
\quad $[V_3, V_4] = V_2 + V_3;$

$A_{4.8}: \quad [V_2, V_3] = X_1, \quad [V_1, V_4] = (1 + q)V_1, \quad [V_2, V_4] = V_2,$
\quad $[V_3, V_4] = qV_3, \quad |q| \leq 1;$

$A_{4.9}: \quad [V_2, V_3] = V_1, \quad [V_1, V_4] = 2qV_1,$
\quad $[V_2, V_4] = qV_2 - V_3, \quad [V_3, V_4] = V_2 + qV_3, \quad q \geq 0;$

$A_{4.10}: \quad [V_1, V_3] = V_1, \quad [V_2, V_3] = V_2, \quad [V_1, V_4] = -V_2,$
\quad $[V_2, V_4] = V_1.$
Construct all possible invertible changes of variables

\[\bar{t} = T(t, x, u), \quad \bar{x} = X(t, x, u), \quad \bar{u} = U(t, x, u), \quad \frac{D(T, X, U)}{D(t, x, u)} \neq 0. \]

which don’t alter the form of Eq. (2.1).

Proposition 2.4

The maximal equivalence group of Eq. (2.1) reads as

\[\bar{t} = T(t), \quad \bar{x} = X(t, x, u), \quad \bar{u} = U(t, x, u), \quad (3.3) \]

Here \(T, X, U \) are arbitrary sufficiently smooth functions and \(\dot{T} \neq 0 \) and \(\frac{D(X, U)}{D(x, u)} \neq 0. \)
One-dimensional algebras

\[V \mapsto \tilde{V} = \tau \dot{T} \partial_{\bar{t}} + (\tau X_t + \xi X_x + \eta X_u) \partial_{\bar{x}} + (\tau U_t + \xi U_x + \eta U_u) \partial_{\bar{u}}. \]

Lemma 2.5

Within the point transformation (3.3), the vector field (3.2) is equivalent to one of the following canonical operators

\[\partial_t, \quad \partial_x. \]
Theorem 2.6
There are two inequivalent equations (2.1) invariant under one-parameter symmetry groups:

\[A_1^1 = \langle \partial_t \rangle : \]
\[u_t = F(x, u, u_x, u_{xx}, u_{xxx})u_{xxxx} + G(x, u, u_x, u_{xx}, u_{xxx}), \]

\[A_1^2 = \langle \partial_x \rangle : \]
\[u_t = F(t, u, u_x, u_{xx}, u_{xxx})u_{xxxx} + G(t, u, u_x, u_{xx}, u_{xxx}). \]

where \(F \) and \(G \) are arbitrary functions of its arguments. Furthermore, the associated symmetry algebra is maximal in Lie’s sense.
\[\mathfrak{so}(3) : \begin{align*} [V_1, V_2] &= V_3, \\
[V_1, V_3] &= -V_2, \\
[V_2, V_3] &= V_1; \end{align*} \]

\[\mathfrak{sl}(2, \mathbb{R}) : \begin{align*} [V_1, V_2] &= 2V_2, \\
[V_1, V_3] &= -2V_3, \\
[V_2, V_3] &= V_1. \end{align*} \]

Consider realizations of the algebras \(\mathfrak{so}(3) \)

- If \(V_1 = \partial_t \), \(V_i = \tau_i(t)\partial_t + \xi_i(t, x, u)\partial_x + \eta_i(t, x, u)\partial_u \), \(i = 2, 3 \)
 and the commutation relations give \(\tau_2^2 + \dot{\tau}_2^2 = -1 \).
- If \(V_1 = \partial_x \), we arrive at a unique realization of \(\mathfrak{so}(3) \)
 \[\langle \partial_x, \tan u \sin x \partial_x + \cos x \partial_u, \tan u \cos x \partial_x - \sin x \partial_u \rangle \]

Theorem 2.7

There exist no realization of the algebra \(\mathfrak{so}(3) \) in terms of vector fields (3.2) which is an invariance algebra of (2.1).
Theorem 2.8

There are six inequivalent realizations of $\mathfrak{sl}(2, \mathbb{R})$ by operators (3.2), which are admitted by Eq. (2.1),

$$
\begin{align*}
\mathfrak{sl}^1(2, \mathbb{R}) &= \langle 2t\partial_t + x\partial_x, -t^2\partial_t - tx\partial_x + x^2\partial_u, \partial_t \rangle, \\
\mathfrak{sl}^2(2, \mathbb{R}) &= \langle 2t\partial_t + x\partial_x, -t^2\partial_t + (x^3 - tx)\partial_x, \partial_t \rangle, \\
\mathfrak{sl}^3(2, \mathbb{R}) &= \langle 2x\partial_x - u\partial_u, -x^2\partial_x + xu\partial_u, \partial_x \rangle, \\
\mathfrak{sl}^4(2, \mathbb{R}) &= \langle 2x\partial_x, -x^2\partial_x, \partial_x \rangle, \\
\mathfrak{sl}^5(2, \mathbb{R}) &= \langle 2x\partial_x - u\partial_u, (\frac{1}{u^4} - x^2)\partial_x + xu\partial_u, \partial_x \rangle, \\
\mathfrak{sl}^6(2, \mathbb{R}) &= \langle 2x\partial_x - u\partial_u, -(x^2 + \frac{1}{u^4})\partial_x + xu\partial_u, \partial_x \rangle.
\end{align*}
$$

Theorem 2.9

The algebras $\mathfrak{sl}^i(2, \mathbb{R}), (i = 1, \cdots, 6)$ exhaust the list of all inequivalent invariant semi-simple algebras admitted by (2.1).
Theorem 2.8

There are six inequivalent realizations of $\mathfrak{sl}(2, \mathbb{R})$ by operators (3.2), which are admitted by Eq. (2.1),

\begin{align*}
\mathfrak{sl}^1(2, \mathbb{R}) &= \langle 2t\partial_t + x\partial_x, -t^2\partial_t - tx\partial_x + x^2\partial_u, \partial_t \rangle, \\
\mathfrak{sl}^2(2, \mathbb{R}) &= \langle 2t\partial_t + x\partial_x, -t^2\partial_t + (x^3 - tx)\partial_x, \partial_t \rangle, \\
\mathfrak{sl}^3(2, \mathbb{R}) &= \langle 2x\partial_x - u\partial_u, -x^2\partial_x + xu\partial_u, \partial_x \rangle, \\
\mathfrak{sl}^4(2, \mathbb{R}) &= \langle 2x\partial_x, -x^2\partial_x, \partial_x \rangle, \\
\mathfrak{sl}^5(2, \mathbb{R}) &= \langle 2x\partial_x - u\partial_u, (\frac{1}{u^4} - x^2)\partial_x + xu\partial_u, \partial_x \rangle, \\
\mathfrak{sl}^6(2, \mathbb{R}) &= \langle 2x\partial_x - u\partial_u, -(x^2 + \frac{1}{u^4})\partial_x + xu\partial_u, \partial_x \rangle.
\end{align*}

Theorem 2.9

The algebras $\mathfrak{sl}^i(2, \mathbb{R}), (i = 1, \cdots, 6)$ exhaust the list of all inequivalent invariant semi-simple algebras admitted by (2.1).
There are two non-isomorphic two-dimensional Lie algebras,

\[A_{2.1} : \quad [V_1, V_2] = 0, \quad A_{2.2} : \quad [V_1, V_2] = V_2. \]

Theorem 2.10

There exist three Abelian

\[A^1_{2.1} \langle \partial_t, \partial_x \rangle \quad A^2_{2.1} \langle \partial_x, \partial_u \rangle \quad A^3_{2.1} \langle \partial_u, x\partial_u \rangle \]

and four non-Abelian two-dimensional symmetry algebras

\[A^1_{2.2} \langle -t\partial_t - x\partial_x, \partial_t \rangle \quad A^2_{2.2} \langle -t\partial_t - x\partial_x, \partial_x \rangle \]
\[A^3_{2.2} \langle -x\partial_x - u\partial_u, \partial_x \rangle \quad A^4_{2.2} \langle -x\partial_x, \partial_x \rangle \]

admitted by Eq. (2.1).
Three-dimensional decomposable algebras

\[A_{3.1} = A_1 \oplus A_1 \oplus A_1 \text{ and } A_{3.2} = A_{2.2} \oplus A_1, \]

with commutation relations

\[[V_i, V_j] = 0 \ (i, j = 1, 2, 3), \]

and

\[[V_1, V_2] = V_2, \ [V_1, V_3] = 0, \ [V_2, V_3] = 0. \]

Theorem 2.11

There exist three \(A_{3.1} \) and eleven \(A_{3.2} \) symmetry algebras admitted by Eq. (2.1).
Three-dimensional non-decomposable algebras

\[A_{3.3} : \quad [V_2, V_3] = V_1; \]
\[A_{3.4} : \quad [V_1, V_3] = V_1, \quad [V_2, V_3] = V_1 + V_2; \]
\[A_{3.5} : \quad [V_1, V_3] = V_1, \quad [V_2, V_3] = V_2; \]
\[A_{3.6} : \quad [V_1, V_3] = V_1, \quad [V_2, V_3] = -V_2; \]
\[A_{3.7} : \quad [V_1, V_3] = V_1, \quad [V_2, V_3] = qV_2, \quad (0 < |q| < 1); \]
\[A_{3.8} : \quad [V_1, V_3] = -V_2, \quad [V_2, V_3] = V_1; \]
\[A_{3.9} : \quad [V_1, V_3] = qV_1 - V_2, \quad [V_2, V_3] = V_1 + qV_2, \quad (q > 0). \]

Theorem 2.12

There exist eight \(A_{3.3} \), eight \(A_{3.4} \), six \(A_{3.5} \), six \(A_{3.6} \), six \(A_{3.7} \), four \(A_{3.8} \) and four \(A_{3.9} \) symmetry algebras admitted by Eq. (2.1).
Four-dimensional decomposable algebras

\[A_{2.2} \oplus A_{2.2} = 2A_{2.2}, \]
\[A_{3.1} \oplus A_1 = 4A_1, \]
\[A_{3.2} \oplus A_1 = A_{2.2} \oplus 2A_1, \]
\[A_{3.i} \oplus A_1 \ (i = 3, 4, \ldots, 9). \]

Theorem 2.13

There exist eighty-five four-dimensional decomposable symmetry algebras admitted by Eq. (2.1).
There are ten nonisomorphically four-dimensional non-decomposable Lie algebras, $A_{4.i} \ (i = 1, 2, \cdots, 10)$, which can be decomposed into a semi-direct sum of a three-dimensional ideal N and a one-dimensional Lie algebra.

- N is of the type $A_{3.1}$ for the algebras $A_{4.i} \ (i = 1, 2, \cdots, 6)$
- N is of the type $A_{3.3}$ for the algebras $A_{4.7}$, $A_{4.8}$, $A_{4.9}$
- N is of the type $A_{3.5}$ for the algebra $A_{4.10}$

Theorem 2.14

There exist seventy four four-dimensional non-decomposable symmetry algebras admitted by Eq. (2.1).
Quasi-local symmetry classification algorithm

- **Step 1** Select all invariant equations, whose invariance algebras contain at least one operator of the form $V = \xi(t, x, u)\partial_x + \eta(t, x, u)\partial_u$

- **Step 2** For each of these equations, make a suitable local equivalence transformation reducing V to be the canonical form ∂_u and the original equations be transformed to evolution equations the form

\[
u_t = F(t, x, u_x, u_{xx}, u_{xxx})u_{xxxx} + G(t, x, u_x, u_{xx}, u_{xxx}).\quad (4.1)\]

- **Step 3** For each Lie symmetry of invariance algebra admitted by (4.1), check whether its infinitesimal generator satisfies one of the conditions

\[\xi_u \neq 0,\]
\[\text{or} \quad \xi_u = 0, \quad \eta_{xx}^2 + \eta_{uu}^2 \neq 0.\]
Step 4 Performing the nonlocal change of variables

\[\bar{t} = t, \quad \bar{x} = x, \quad \bar{u} = u_x \quad (4.2) \]

and replacing \(u_x \) with \(u \) transform Eq. (4.1) to

\[u_t = F u_{xxxx} + [(F_x + F_u u_x + F_u u_{xx} + F_{uxx} u_{xxx}) u_{xxx} \]
\[+ G_x + G_u u_x + G_{ux} u_{xx} + G_{uxx} u_{xxx}] \]

which has quasi-local symmetries

\[t' = T(t, \theta), \quad x' = X(t, x, v, \theta), \quad u' = \frac{U_v u + U_x}{X_v u + X_x}. \]

corresponding to Lie symmetries

\[t' = T(t, \theta), \quad x' = X(t, x, u, \theta), \quad u' = U(t, x, u, \theta) \]

of the original equation (4.1), where \(v = \partial^{-1} u \).
Theorem 3.1

There are four semi-simple, twelve three-dimensional solvable, sixty-five four-dimensional solvable Lie algebras which can be transformed to quasi-local symmetries of Eq. (2.1) by a nonlocal change of variable.
Consider the algebra $\mathfrak{sl}_4^4(2, \mathbb{R}) = \langle 2x \partial_x, -x^2 \partial_x, \partial_x \rangle$. Making the hodograph transformation
\[
\bar{t} = t, \quad \bar{x} = u, \quad \bar{u} = x,
\]
transforms the original algebra to become
\[
\langle 2u \partial_u, -u^2 \partial_u, \partial_u \rangle.
\]
The corresponding invariant equation reads as
\[
u_t = F(t, x, \omega)u_{xxxx} + \frac{3u_x^3 - 4u_x u_{xx}u_{xxx}}{u_x^2} F(t, x, \omega) + u_x G(t, x, \omega).
\]
Here $\omega = (2u_x u_{xx} - 3u_{xx}^2)u_x^{-2}$ and F, G are arbitrary smooth functions.
Differentiating the above equation with respect to \(x\) and replacing \(u_x\) with \(u\) according to (4.2) we arrive at the evolution equation

\[
\frac{\partial u}{\partial t} = F u_{xxxx} + \left(u_{xxx} + \frac{3u^3_{xx} - 4u_x u_{xx} u_{xxx}}{u_x^2} \right) (F_x + \sigma F \omega) - 4u^2 u_x^2 (u_{xx} + u_x u_{xxx}) - 13uu_x^2 u_{xx} + 6u_x^4 F \\
+ u_x G + uG_x + u\sigma G \omega,
\]

with \(\omega = (2uu_{xx} - 3u_x^2)u^{-2}\) and \(\sigma = 2(u^2u_{xxx} - 4uu_x u_{xx} + 3u_x^3)u^{-3}\). This equation admits the quasi-local transformation group

\[
t' = t, \quad x' = x, \quad u' = \frac{u}{(\theta u + 1)^2},
\]
Example

with symmetry operator

\[-2uv \partial_u\]

where \(\theta \) is a group parameter and \(v = \partial^{-1} u \).
R. Zhdanov, V. Lahno and C. Z. Qu,
Nonlinear evolution equations and semi-simple Lie algebra.
preprint, 2010.

Q. Huang, C. Z. Qu and R. Zhdanov,
On potential symmetry classification of fourth-order evolution equations.
preprint, 2010.

Q. Huang, C. Z. Qu and R. Zhdanov,
Classification of local and non-local symmetries of fourth-order nonlinear evolution equations.
Q. Huang, V. Lahno, C. Z. Qu and R. Zhdanov,
Preliminary group classification of a class of fourth-order evolution equations.

Q. Huang and C. Z. Qu,
Symmetries and invariant solutions for the geometric heat flows.

S. F. Shen, C. Z. Qu, Q. Huang and Y. Y. Jin,
Lie group classification of the generalized KdV-type nonlinear evolution equations.
Thank you!
Thank you!