Shear radial wave propagation models in fiber-reinforced hyperelastic and hyper-viscoelastic cylindrically symmetric media

Alexei Cheviakov and Caylin Lee
Department of Mathematics and Statistics, University of Saskatchewan

Finite elasticity

Material (reference) domain: \(\Omega_0 \subseteq \mathbb{R}^3 \); actual spatial domain: \(\Omega \subseteq \mathbb{R}^3 \).

Figure 1. The material (Lagrangian) and actual (Eulerian) domains, coordinates, fiber direction vectors.

The positions of material points labelled by Lagrangian coordinates \(X \) at time \(t \) define the actual (Eulerian) coordinates and the deformation gradient, and left and right Cauchy-Green strain tensors

\[
\mathbf{x} = \varphi(X, t), \quad \mathbf{F}(X, t) = \nabla \varphi(X, \mathbf{x}), \quad \mathbf{B} = \mathbf{F}^T, \quad \mathbf{C} = \mathbf{F}^T \mathbf{F}.
\]

Jacobian and the actual density \(\rho \) in terms of the material density \(\rho_0 \) are given by

\[
J = \det \mathbf{F} > 0, \quad \rho(X, t) = \rho_0(X)/J.
\]

The framework of finite elasticity allows one to systematically derive equations of motion describing non-small deformations of elastic materials in a variety of settings.

- A deformation class determines forms of admissible deformations (for instance, incompressibility, or motion in prescribed directions).
- A constitutive relationship defines the hyperelastic strain energy density function \(W = W(\mathbf{C}, \mathbf{x}) \) and other constitutive functions/parameters involved.
- Extensions including anisotropy (such as fiber effects) and viscoelasticity can be used.
- External loads \(\mathbf{Q} \), initial and boundary conditions (including pre-strained configurations), anisotropy (embedded fibers), etc.

The Piola-Kirchhoff stress tensors for incompressible models \((J = 1) \):

\[
\mathbf{P} = -p \mathbf{F}^T + \rho \frac{\partial W}{\partial \mathbf{C}} = \mathbf{FS}, \quad \mathbf{S} = -p \mathbf{C}^{-1} + 2\mu \frac{\partial W}{\partial \mathbf{C}}.
\]

Equations of motion:

\[
\rho \frac{\partial \mathbf{x}}{\partial t} = \mathbf{P} + \mathbf{Q}, \quad J = 1.
\]

Anisotropic elastic solids with helical fibers

A blood vessel model: multi-layer incompressible cylindrical shell with two sets of imbedded helical fiber families. Material fiber directions of the fiber families: \(\mathbf{A}_j, j = 1, 2 \); Eulerian fiber direction vectors: \(\mathbf{a}_j = \mathbf{FA}_j/|\mathbf{FA}_j| \); stretch factors: \(\lambda_j = |\mathbf{FA}_j| \).

Helical fibers:

\[
\begin{align*}
\mathbf{A}_1(X) &= -\cos \beta \sin \Phi \mathbf{e}_1 + \cos \cos \Phi \mathbf{e}_2 + \sin \beta \mathbf{e}_3, \\
\mathbf{A}_2(X) &= -\cos \beta \sin \Phi \mathbf{e}_1 + \cos \cos \Phi \mathbf{e}_2 - \sin \beta \mathbf{e}_3.
\end{align*}
\]

Figure 2. Left: cross-section of a typical artery [1] (I=intima, M=media, A=adventitia). Right: a fiber-reinforced cylindrical shell, fiber helical pitch angles \(\pm \beta \).

General hyperelasticity invariants:

\[
I_1 = \mathbf{C} \cdot \mathbf{C}, \quad I_2 = \frac{1}{2} \| \mathbf{C}^2 - \mathbf{C} \|, \quad I_3 = \det \mathbf{C} = J = 1.
\]

Fiber invariants:

\[
I_1 = \mathbf{A}_1^T \mathbf{C} \mathbf{A}_1, \quad I_2 = \mathbf{A}_2^T \mathbf{C} \mathbf{A}_2, \quad I_3 = \mathbf{A}_1^T \mathbf{A}_2^T = \mathbf{A}_2^T \mathbf{A}_1^T.
\]

Hyperelastic stored energy: Mooney-Rivlin + standard quadratic reinforcement

\[
W = k(I_1 - 3) + b(I_2 - 3) + \eta(I_4 - 3)^2 + \eta(I_6 - 3)^2 + K_1 C_1^2 + K_2 C_2.
\]

A modified fiber model

Modified fibers: with projection on the radial direction.

Direction vectors:

\[
\begin{align*}
\mathbf{A}_1 &= -\cos \beta \sin (\Phi + \delta) \mathbf{e}_1 + \cos \cos (\Phi + \delta) \mathbf{e}_2 + \sin \beta \mathbf{e}_3, \\
\mathbf{A}_2 &= -\cos \beta \sin (\Phi - \delta) \mathbf{e}_1 + \cos \cos (\Phi - \delta) \mathbf{e}_2 - \sin \beta \mathbf{e}_3.
\end{align*}
\]

Figure 4. Modified helical fibers – horizontal projection; cylindrical domain.

A viscoelastic model

Total potential: (hyperelastic plus viscoelastic). \(W = W^h + W^v \);

\[
W^v = \frac{b_1}{2} \chi_j (I_j - 3) + \frac{b_2}{2} (I_j - 3)^2 + \frac{b_3}{2} (I_j - 3)^3, \quad j = 1, 2, 3.
\]

with pseudo-invariants \(I_1 = \mathbf{C}^T \mathbf{C}, I_2 = \mathbf{A}_1^T \mathbf{C} \mathbf{A}_1, \) and material viscosity parameters \(\mu_j, j = 1, 2, 3 \). Then the total stress becomes

\[
\mathbf{S} = \mathbf{S}^h + \mathbf{S}^v = -p \mathbf{C}^{-1} + 2\mu_1 \frac{\partial W^h}{\partial \mathbf{C}} + \frac{\partial W^v}{\partial \mathbf{C}}.
\]

Conclusions and work directions

- Radial finite-amplitude shear waves in an elastic solid with helical fibers are described by a linear wave equation.
- A modified fiber model leads to a new class of nonlinear wave equations.
- The general equations of motion (1) and PDEs (9) have a Lagrangian formulation.
- An extended viscoelastic model includes mixed third-order space-time derivatives.
- The new wave equations are relevant to modeling certain aspects of elastic deformations in blood vessels.
- Future work will study properties of the new nonlinear wave equations.

References

Mathematical Foundations of Elasticity.