Techniques for Finding Derivatives

Derivative Rules:
Techniques for Finding Derivatives

Derivative Rules:

(1) If c is a constant, then
Techniques for Finding Derivatives

Derivative Rules:

(1) If \(c \) is a constant, then \(\frac{d}{dx} [c] = 0 \).
Techniques for Finding Derivatives

Derivative Rules:

(1) If \(c \) is a constant, then \(\frac{d}{dx} [c] = 0 \).

(2) If \(a \) is any real number,
Techniques for Finding Derivatives

Derivative Rules:

(1) If c is a constant, then $\frac{d}{dx} [c] = 0$.

(2) If a is any real number, $\frac{d}{dx} [x^a] = ax^{a-1}$.

Techniques for Finding Derivatives

Derivative Rules:

1. If c is a constant, then $\frac{d}{dx} [c] = 0$.

2. If a is any real number, $\frac{d}{dx} [x^a] = ax^{a-1}$.

3. If f is differentiable at x,
Techniques for Finding Derivatives

Derivative Rules:

(1) If \(c \) is a constant, then \(\frac{d}{dx} [c] = 0 \).

(2) If \(a \) is any real number, \(\frac{d}{dx} [x^a] = ax^{a-1} \).

(3) If \(f \) is differentiable at \(x \), \(\frac{d}{dx} [cf(x)] = c \frac{d}{dx} [f(x)] \).

If \(f \) and \(g \) are differentiable at \(x \), then
Techniques for Finding Derivatives

Derivative Rules:

(1) If \(c \) is a constant, then \(\frac{d}{dx}[c] = 0 \).

(2) If \(a \) is any real number, \(\frac{d}{dx}[x^a] = ax^{a-1} \).

(3) If \(f \) is differentiable at \(x \), \(\frac{d}{dx}[cf(x)] = c \frac{d}{dx}[f(x)] \).

If \(f \) and \(g \) are differentiable at \(x \), then

(4)
Techniques for Finding Derivatives

Derivative Rules:

1. If c is a constant, then $\frac{d}{dx}[c] = 0$.

2. If a is any real number, $\frac{d}{dx}[x^a] = ax^{a-1}$.

3. If f is differentiable at x, $\frac{d}{dx}[cf(x)] = c\frac{d}{dx}[f(x)]$.

If f and g are differentiable at x, then

4. $\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]$.
Techniques for Finding Derivatives

Derivative Rules:

(1) If c is a constant, then
\[
\frac{d}{dx} [c] = 0.
\]

(2) If a is any real number,
\[
\frac{d}{dx} [x^a] = ax^{a-1}.
\]

(3) If f is differentiable at x,
\[
\frac{d}{dx} [cf(x)] = c \frac{d}{dx} [f(x)].
\]

If f and g are differentiable at x, then

(4) \[
\frac{d}{dx} [f(x) + g(x)] = \frac{d}{dx} [f(x)] + \frac{d}{dx} [g(x)].
\]
Techniques for Finding Derivatives

Derivative Rules:

1. If c is a constant, then $\frac{d}{dx} [c] = 0$.

2. If a is any real number, $\frac{d}{dx} [x^a] = ax^{a-1}$.

3. If f is differentiable at x, $\frac{d}{dx} [cf(x)] = c \frac{d}{dx} [f(x)]$.

If f and g are differentiable at x, then

4. $\frac{d}{dx} [f(x) + g(x)] = \frac{d}{dx} [f(x)] + \frac{d}{dx} [g(x)]$.

5. $\frac{d}{dx} [f(x) - g(x)] = \frac{d}{dx} [f(x)] - \frac{d}{dx} [g(x)]$.
Techniques for Finding Derivatives

Derivative Rules:

1. If c is a constant, then \(\frac{d}{dx}[c] = 0 \).
2. If a is any real number, \(\frac{d}{dx}[x^a] = ax^{a-1} \).
3. If f is differentiable at x, \(\frac{d}{dx}[cf(x)] = c \frac{d}{dx}[f(x)] \).

If f and g are differentiable at x, then

4. \(\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)] \).
5. \(\frac{d}{dx}[f(x) - g(x)] = \frac{d}{dx}[f(x)] - \frac{d}{dx}[g(x)] \).

These rules are sufficient for the differentiation of all polynomials.

Example 1: \(\frac{d}{dx}[8x^{10}] = \)
Techniques for Finding Derivatives

Derivative Rules:

(1) If c is a constant, then $\frac{d}{dx} [c] = 0$.

(2) If a is any real number, $\frac{d}{dx} [x^a] = ax^{a-1}$.

(3) If f is differentiable at x, $\frac{d}{dx} [cf(x)] = c \frac{d}{dx} [f(x)]$.

If f and g are differentiable at x, then

(4) $\frac{d}{dx} [f(x) + g(x)] = \frac{d}{dx} [f(x)] + \frac{d}{dx} [g(x)]$.

(5) $\frac{d}{dx} [f(x) - g(x)] = \frac{d}{dx} [f(x)] - \frac{d}{dx} [g(x)]$.

These rules are sufficient for the differentiation of all polynomials.

Example 1: $\frac{d}{dx} [8x^{10}] = 8 \frac{d}{dx} [x^{10}] = \ldots$
Techniques for Finding Derivatives

Derivative Rules:

(1) If c is a constant, then
$$\frac{d}{dx} [c] = 0.$$

(2) If a is any real number,
$$\frac{d}{dx} [x^a] = ax^{a-1}.$$

(3) If f is differentiable at x,
$$\frac{d}{dx} [cf(x)] = c \frac{d}{dx} [f(x)].$$

If f and g are differentiable at x, then

(4) $$\frac{d}{dx} [f(x) + g(x)] = \frac{d}{dx} [f(x)] + \frac{d}{dx} [g(x)].$$

(5) $$\frac{d}{dx} [f(x) - g(x)] = \frac{d}{dx} [f(x)] - \frac{d}{dx} [g(x)].$$

These rules are sufficient for the differentiation of all polynomials.

Example 1: $$\frac{d}{dx} [8x^{10}] = 8 \frac{d}{dx} [x^{10}] = 8 (10x^{10-1}) =$$
Techniques for Finding Derivatives

Derivative Rules:

1. If c is a constant, then \[\frac{d}{dx}[c] = 0. \]

2. If a is any real number, \[\frac{d}{dx}[x^a] = ax^{a-1}. \]

3. If f is differentiable at x, \[\frac{d}{dx}[cf(x)] = c \frac{d}{dx}[f(x)]. \]

4. If f and g are differentiable at x, then \[\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]. \]

5. \[\frac{d}{dx}[f(x) - g(x)] = \frac{d}{dx}[f(x)] - \frac{d}{dx}[g(x)]. \]

These rules are sufficient for the differentiation of all polynomials.

Example 1: \[\frac{d}{dx}[8x^{10}] = 8 \frac{d}{dx}[x^{10}] = 8(10x^{10-1}) = \]
Techniques for Finding Derivatives

Derivative Rules:

(1) If c is a constant, then $\frac{d}{dx}[c] = 0$.

(2) If a is any real number, $\frac{d}{dx}[x^a] = ax^{a-1}$.

(3) If f is differentiable at x, $\frac{d}{dx}[cf(x)] = c \frac{d}{dx}[f(x)]$.

(4) If f and g are differentiable at x, then $\frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]$.

(5) $\frac{d}{dx}[f(x) - g(x)] = \frac{d}{dx}[f(x)] - \frac{d}{dx}[g(x)]$.

These rules are sufficient for the differentiation of all polynomials.

Example 1: $\frac{d}{dx}[8x^{10}] = 8 \frac{d}{dx}[x^{10}] = 8(10x^{10-1}) = 80x^9$
Techniques for Finding Derivatives

Derivative Rules:

(1) If \(c \) is a constant, then \(\frac{d}{dx} [c] = 0. \)

(2) If \(a \) is any real number, \(\frac{d}{dx} [x^a] = ax^{a-1}. \)

(3) If \(f \) is differentiable at \(x \), \(\frac{d}{dx} [c f(x)] = c \frac{d}{dx} [f(x)]. \)

If \(f \) and \(g \) are differentiable at \(x \), then

(4) \(\frac{d}{dx} [f(x) + g(x)] = \frac{d}{dx} [f(x)] + \frac{d}{dx} [g(x)]. \)

(5) \(\frac{d}{dx} [f(x) - g(x)] = \frac{d}{dx} [f(x)] - \frac{d}{dx} [g(x)]. \)

These rules are sufficient for the differentiation of all polynomials.

Example 1: \(\frac{d}{dx} [8x^{10}] = 8 \frac{d}{dx} [x^{10}] = 8 \left(10x^{10-1} \right) = 80x^9 \)
Example 2: \[
\frac{d}{dx} \left[x^5 + x^{-1} \right] =
\]
Example 2: \[
\frac{d}{dx} \left[x^5 + x^{-1} \right] = \frac{d}{dx} \left[x^5 \right] + \frac{d}{dx} \left[x^{-1} \right] =
\]
Example 2: \[\frac{d}{dx}[x^5 + x^{-1}] = \frac{d}{dx}[x^5] + \frac{d}{dx}[x^{-1}] = \]

\[5x^{5-1} + (-1)x^{-1-1} = \]
Example 2: \[
\frac{d}{dx} \left[x^5 + x^{-1} \right] = \frac{d}{dx} \left[x^5 \right] + \frac{d}{dx} \left[x^{-1} \right] = \\
5x^{5-1} + (-1)x^{-1-1} =
\]
Example 2: \[\frac{d}{dx} \left[x^5 + x^{-1} \right] = \frac{d}{dx} \left[x^5 \right] + \frac{d}{dx} \left[x^{-1} \right] = \]

\[5x^{5-1} + (-1)x^{-1-1} = 5x^4 - x^{-2} \]
Example 2: \[\frac{d}{dx} \left[x^5 + x^{-1} \right] = \frac{d}{dx} \left[x^5 \right] + \frac{d}{dx} \left[x^{-1} \right] = 5x^{5-1} + (-1)x^{-1-1} = 5x^4 - x^{-2} \]

Example 3: \[\frac{d}{dx} \left[5x^4 - x^{-2} \right] = \]
Example 2: \[\frac{d}{dx} \left[x^5 + x^{-1} \right] = \frac{d}{dx} \left[x^5 \right] + \frac{d}{dx} \left[x^{-1} \right] = \]

\[5x^{5-1} + (-1)x^{-1-1} = 5x^4 - x^{-2} \]

Example 3: \[\frac{d}{dx} \left[5x^4 - x^{-2} \right] = \frac{d}{dx} \left[5x^4 \right] - \frac{d}{dx} \left[x^{-2} \right] = \]
Example 2: \[
\frac{d}{dx} \left[x^5 + x^{-1} \right] = \frac{d}{dx} \left[x^5 \right] + \frac{d}{dx} \left[x^{-1} \right] =
\]
\[5x^{5-1} + (-1)x^{-1-1} = 5x^4 - x^{-2}\]

Example 3: \[
\frac{d}{dx} \left[5x^4 - x^{-2} \right] = \frac{d}{dx} \left[5x^4 \right] - \frac{d}{dx} \left[x^{-2} \right] =
\]
\[5 \frac{d}{dx} \left[x^4 \right] - (-2)x^{-2-1} =\]
Example 2: \[\frac{d}{dx} \left[x^5 + x^{-1} \right] = \frac{d}{dx} \left[x^5 \right] + \frac{d}{dx} \left[x^{-1} \right] = 5x^4 - (-1)x^{-2-1} = 5x^4 - x^{-2} \]

Example 3: \[\frac{d}{dx} \left[5x^4 - x^{-2} \right] = \frac{d}{dx} \left[5x^4 \right] - \frac{d}{dx} \left[x^{-2} \right] = 5 \frac{d}{dx} \left[x^4 \right] - (-2)x^{-2-1} = 5(4)x^{4-1} + 2x^{-3} = 20x^3 + 2x^{-3} \]
Example 2: \[
\frac{d}{dx} \left[x^5 + x^{-1} \right] = \frac{d}{dx} \left[x^5 \right] + \frac{d}{dx} \left[x^{-1} \right] = \\
5x^{5-1} + (-1)x^{-1-1} = 5x^4 - x^{-2}
\]

Example 3: \[
\frac{d}{dx} \left[5x^4 - x^{-2} \right] = \frac{d}{dx} \left[5x^4 \right] - \frac{d}{dx} \left[x^{-2} \right] = \\
5 \frac{d}{dx} \left[x^4 \right] - (-2)x^{-2-1} = 5(4)x^{4-1} + 2x^{-3} =
\]
Example 2: \[\frac{d}{dx} \left[x^5 + x^{-1} \right] = \frac{d}{dx} \left[x^5 \right] + \frac{d}{dx} \left[x^{-1} \right] = \\
5x^{5-1} + (-1)x^{-1-1} = 5x^4 - x^{-2} \]

Example 3: \[\frac{d}{dx} \left[5x^4 - x^{-2} \right] = \frac{d}{dx} \left[5x^4 \right] - \frac{d}{dx} \left[x^{-2} \right] = \\
5 \cdot \frac{d}{dx} \left[x^4 \right] - (-2)x^{-2-1} = 5(4)x^{4-1} + 2x^{-3} = 20x^3 + 2x^{-3} \]

The Product & Quotient Rules
Example 2:
\[
\frac{d}{dx} \left[x^5 + x^{-1} \right] = \frac{d}{dx} \left[x^5 \right] + \frac{d}{dx} \left[x^{-1} \right] = \\
5x^4 - (-1)x^{-2} = 5x^4 - x^{-2}
\]

Example 3:
\[
\frac{d}{dx} \left[5x^4 - x^{-2} \right] = \frac{d}{dx} \left[5x^4 \right] - \frac{d}{dx} \left[x^{-2} \right] = \\
5 \frac{d}{dx} \left[x^4 \right] - (-2)x^{-2-1} = 5(4)x^{4-1} + 2x^{-3} = 20x^3 + 2x^{-3}
\]

The Product & Quotient Rules

The Product Rule

The derivative of the product of two non-constant functions is
Example 2: \[
\frac{d}{dx}[x^5 + x^{-1}] = \frac{d}{dx}[x^5] + \frac{d}{dx}[x^{-1}] = 5x^4 - x^{-2}
\]

Example 3: \[
\frac{d}{dx}[5x^4 - x^{-2}] = \frac{d}{dx}[5x^4] - \frac{d}{dx}[x^{-2}] = 20x^3 + 2x^{-3}
\]

The Product & Quotient Rules

The Product Rule

The derivative of the product of two non-constant functions is **never** equal to the product of their derivatives.
Example 2: \[
\frac{d}{dx} \left[x^5 + x^{-1} \right] = \frac{d}{dx} \left[x^5 \right] + \frac{d}{dx} \left[x^{-1} \right] = \\
5x^{5-1} + (-1)x^{-1-1} = 5x^4 - x^{-2}
\]

Example 3: \[
\frac{d}{dx} \left[5x^4 - x^{-2} \right] = \frac{d}{dx} \left[5x^4 \right] - \frac{d}{dx} \left[x^{-2} \right] = \\
5 \frac{d}{dx} \left[x^4 \right] - (-2)x^{-2-1} = 5(4)x^{4-1} + 2x^{-3} = 20x^3 + 2x^{-3}
\]

The Product & Quotient Rules

The Product Rule

The derivative of the product of two non-constant functions is **never** equal to the product of their derivatives.

We have
Example 2: \[
\frac{d}{dx} [x^5 + x^{-1}] = \frac{d}{dx} [x^5] + \frac{d}{dx} [x^{-1}] = \\
5x^4 - (-1)x^{-2-1} = 5x^4 - x^{-2}
\]

Example 3: \[
\frac{d}{dx} [5x^4 - x^{-2}] = \frac{d}{dx} [5x^4] - \frac{d}{dx} [x^{-2}] = \\
5 \frac{d}{dx} [x^4] - (-2)x^{-2-1} = 5(4)x^{4-1} + 2x^{-3} = 20x^3 + 2x^{-3}
\]

The Product & Quotient Rules

The Product Rule
The derivative of the product of two non-constant functions is never equal to the product of their derivatives.

We have \[
\frac{d}{dx} [f(x)g(x)] = f(x)\frac{d}{dx} [g(x)] + g(x)\frac{d}{dx} [f(x)]
\]
Example 2: \[\frac{d}{dx} \left[x^5 + x^{-1} \right] = \frac{d}{dx} \left[x^5 \right] + \frac{d}{dx} \left[x^{-1} \right] = \]

\[5x^{5-1} + (-1)x^{-1-1} = 5x^4 - x^{-2} \]

Example 3: \[\frac{d}{dx} \left[5x^4 - x^{-2} \right] = \frac{d}{dx} \left[5x^4 \right] - \frac{d}{dx} \left[x^{-2} \right] = \]

\[5 \frac{d}{dx} \left[x^4 \right] - (-2)x^{-2-1} = 5(4)x^{4-1} + 2x^{-3} = 20x^3 + 2x^{-3} \]

The Product & Quotient Rules

The Product Rule

The derivative of the product of two non-constant functions is \textbf{never} equal to the product of their derivatives.

We have \[\frac{d}{dx} \left[f(x)g(x) \right] = f(x) \frac{d}{dx} \left[g(x) \right] + g(x) \frac{d}{dx} \left[f(x) \right] \]

or, in function notation
Example 2: \[
\frac{d}{dx} \left[x^5 + x^{-1} \right] = \frac{d}{dx} \left[x^5 \right] + \frac{d}{dx} \left[x^{-1} \right] = 5x^4 - (-1)x^{-2} = 5x^4 - x^{-2}
\]

Example 3: \[
\frac{d}{dx} \left[5x^4 - x^{-2} \right] = \frac{d}{dx} \left[5x^4 \right] - \frac{d}{dx} \left[x^{-2} \right] = 5 \frac{d}{dx} \left[x^4 \right] - (-2)x^{-3-1} = 5(4)x^{4-1} + 2x^{-3} = 20x^3 + 2x^{-3}
\]

The Product & Quotient Rules

The Product Rule

The derivative of the product of two non-constant functions is **never** equal to the product of their derivatives.

We have \[
\frac{d}{dx} \left[f(x)g(x) \right] = f(x) \frac{d}{dx} \left[g(x) \right] + g(x) \frac{d}{dx} \left[f(x) \right]
\]

or, in function notation

\[(fg)' = f'g + fg'\]
Example 2: \[\frac{d}{dx} \left[x^5 + x^{-1} \right] = \frac{d}{dx} \left[x^5 \right] + \frac{d}{dx} \left[x^{-1} \right] = 5x^4 - x^{-2} \]

Example 3: \[\frac{d}{dx} \left[5x^4 - x^{-2} \right] = \frac{d}{dx} \left[5x^4 \right] - \frac{d}{dx} \left[x^{-2} \right] = 20x^3 + 2x^{-3} \]

The Product & Quotient Rules

The Product Rule

The derivative of the product of two non-constant functions is never equal to the product of their derivatives.

We have \[\frac{d}{dx} [f(x)g(x)] = f(x) \frac{d}{dx} [g(x)] + g(x) \frac{d}{dx} [f(x)] \]

or, in function notation

\[(fg)' = fg' + f'g\]

or
Example 2: \[\frac{d}{dx} [x^5 + x^{-1}] = \frac{d}{dx} [x^5] + \frac{d}{dx} [x^{-1}] = 5x^4 - x^{-2} \]

Example 3: \[\frac{d}{dx} [5x^4 - x^{-2}] = \frac{d}{dx} [5x^4] - \frac{d}{dx} [x^{-2}] = 20x^3 + 2x^{-3} \]

The Product & Quotient Rules

The Product Rule

The derivative of the product of two non-constant functions is never equal to the product of their derivatives.

We have \[\frac{d}{dx} [f(x)g(x)] = f(x) \frac{d}{dx} [g(x)] + g(x) \frac{d}{dx} [f(x)] \]

or, in function notation

\[(fg)' = fg' + f'g \]

or

\[(f(x)g(x))' = f(x)g'(x) + f'(x)g(x) \]
Example 4: Let $f(x) = x$, and $g(x) = x$, so that $f(x)g(x) = x \cdot x = x^2$. Then the Product Rule gives us
Example 4: Let \(f(x) = x \) and \(g(x) = x \), so that \(f(x)g(x) = x \cdot x = x^2 \). Then the Product Rule gives us
\[
(x \cdot x)' = \]

Example 4: Let $f(x) = x$ and $g(x) = x$, so that $f(x)g(x) = x \cdot x = x^2$. Then the Product Rule gives us

$$(x \cdot x)' = x(x)' + (x)'x =$$
Example 4: Let \(f(x) = x \), and \(g(x) = x \), so that \(f(x)g(x) = x \cdot x = x^2 \). Then the Product Rule gives us

\[
(x \cdot x)' = x(x)' + (x)'x = x(1) + (1)x =
\]
Example 4: Let \(f(x) = x \), and \(g(x) = x \), so that \(f(x)g(x) = x \cdot x = x^2 \). Then the Product Rule gives us
\[
(x \cdot x)' = x(x)' + (x)'x = x(1) + (1)x = 2x,
\]
Example 4: Let \(f(x) = x \), and \(g(x) = x \), so that \(f(x)g(x) = x \cdot x = x^2 \). Then the Product Rule gives us

\[
(x \cdot x)' = x(x)' + (x)'x = x(1) + (1)x = 2x,
\]
which agrees with \((x^2)' = 2x \).
Example 4: Let \(f(x) = x \), and \(g(x) = x \), so that \(f(x)g(x) = x \cdot x = x^2 \). Then the Product Rule gives us

\[
(x \cdot x)' = x(x)' + (x)'x = x(1) + (1)x = 2x,
\]

which agrees with \((x^2)' = 2x \).

Notice that \(f'(x)g'(x) = 1(1) = 1 \), which is quite different, and incorrect.

Example 5: Find the derivative of \((2x^2 + 3)(4x + 5)\).
Example 4: Let $f(x) = x$, and $g(x) = x$, so that $f(x)g(x) = x \cdot x = x^2$. Then the Product Rule gives us $(x \cdot x)' = x(x)' + (x)'x = x(1) + (1)x = 2x$, which agrees with $(x^2)' = 2x$.

Notice that $f'(x)g'(x) = 1(1) = 1$, which is quite different, and incorrect.

Example 5: Find the derivative of $(2x^2 + 3)(4x + 5)$.

Let $f(x) = 2x^2 + 3$, and $g(x) = 4x + 5$.
Example 4: Let \(f(x) = x \), and \(g(x) = x \), so that \(f(x)g(x) = x \cdot x = x^2 \). Then the Product Rule gives us
\[
(x \cdot x)' = x(x)' + (x)'x = x(1) + (1)x = 2x,
\]
which agrees with \((x^2)' = 2x \).
Notice that \(f'(x)g'(x) = 1(1) = 1 \), which is quite different, and incorrect.

Example 5: Find the derivative of \((2x^2 + 3)(4x + 5)\).

Let \(f(x) = 2x^2 + 3 \), and \(g(x) = 4x + 5 \).

Then \(f'(x) = 4x \) and
Example 4: Let $f(x) = x$, and $g(x) = x$, so that $f(x)g(x) = x \cdot x = x^2$. Then the Product Rule gives us

$$(x \cdot x)' = x(x)' + (x)'x = x(1) + (1)x = 2x,$$

which agrees with $(x^2)' = 2x$.

Notice that $f'(x)g'(x) = 1(1) = 1$, which is quite different, and incorrect.

Example 5: Find the derivative of $(2x^2 + 3)(4x + 5)$.

Let $f(x) = 2x^2 + 3$, and $g(x) = 4x + 5$.

Then $f'(x) = 4x$ and $g'(x) = 4$, so
Example 4: Let \(f(x) = x \), and \(g(x) = x \), so that \(f(x)g(x) = x \cdot x = x^2 \). Then the Product Rule gives us
\[
(x \cdot x)' = x(x)' + (x)'x = x(1) + (1)x = 2x,
\]
which agrees with \((x^2)' = 2x \).
Notice that \(f'(x)g'(x) = 1(1) = 1 \), which is quite different, and incorrect.

Example 5: Find the derivative of \((2x^2 + 3)(4x + 5)\).

Let \(f(x) = 2x^2 + 3 \), and \(g(x) = 4x + 5 \).

Then \(f'(x) = 4x \) and \(g'(x) = 4 \), so \(f(x)g(x) = (2x^2 + 3)(4x + 5) \), and
Example 4: Let $f(x) = x$, and $g(x) = x$, so that $f(x)g(x) = x \cdot x = x^2$. Then the Product Rule gives us

$$(x \cdot x)' = x(x)' + (x)'x = x(1) + (1)x = 2x,$$

which agrees with $(x^2)' = 2x$.

Notice that $f'(x)g'(x) = 1(1) = 1$, which is quite different, and incorrect.

Example 5: Find the derivative of $(2x^2 + 3)(4x + 5)$.

Let $f(x) = 2x^2 + 3$, and $g(x) = 4x + 5$.

Then $f'(x) = 4x$ and $g'(x) = 4$, so $f(x)g(x) = (2x^2 + 3)(4x + 5)$, and

$$(f(x)g(x))' =$$
Example 4: Let \(f(x) = x \), and \(g(x) = x \), so that \(f(x)g(x) = x \cdot x = x^2 \). Then the Product Rule gives us \((x \cdot x)' = x(x)' + (x)'x = x(1) + (1)x = 2x\), which agrees with \((x^2)' = 2x\).

Notice that \(f'(x)g'(x) = 1(1) = 1 \), which is quite different, and incorrect.

Example 5: Find the derivative of \((2x^2 + 3)(4x + 5)\).

Let \(f(x) = 2x^2 + 3 \), and \(g(x) = 4x + 5 \).

Then \(f'(x) = 4x \) and \(g'(x) = 4 \), so \(f(x)g(x) = (2x^2 + 3)(4x + 5) \), and

\[
(f(x)g(x))' = f(x)g'(x) + f'(x)g(x) =
\]
Example 4: Let $f(x) = x$, and $g(x) = x$, so that $f(x)g(x) = x \cdot x = x^2$. Then the Product Rule gives us
\[(x \cdot x)' = x(x)' + (x)'x = x(1) + (1)x = 2x,\]
which agrees with $(x^2)' = 2x$.
Notice that $f'(x)g'(x) = 1(1) = 1$, which is quite different, and incorrect.

Example 5: Find the derivative of $(2x^2 + 3)(4x + 5)$.

Let $f(x) = 2x^2 + 3$, and $g(x) = 4x + 5$.

Then $f'(x) = 4x$ and $g'(x) = 4$, so $f(x)g(x) = (2x^2 + 3)(4x + 5)$, and
\[(f(x)g(x))' = f(x)g'(x) + f'(x)g(x) = (2x^2 + 3)(4) + (4x)(4x + 5) = \]
Example 4: Let $f(x) = x$, and $g(x) = x$, so that $f(x)g(x) = x \cdot x = x^2$. Then the Product Rule gives us

$$(x \cdot x)' = x(x)' + (x)'x = x(1) + (1)x = 2x,$$

which agrees with $(x^2)' = 2x$.

Notice that $f'(x)g'(x) = 1(1) = 1$, which is quite different, and incorrect.

Example 5: Find the derivative of $(2x^2 + 3)(4x + 5)$.

Let $f(x) = 2x^2 + 3$, and $g(x) = 4x + 5$.

Then $f'(x) = 4x$ and $g'(x) = 4$, so $f(x)g(x) = (2x^2 + 3)(4x + 5)$, and

$$
(f(x)g(x))' = f(x)g'(x) + f'(x)g(x) = (2x^2 + 3)(4) + (4x)(4x + 5) = (8x^2 + 12) + (16x^2 + 20x) =
$$
Example 4: Let \(f(x) = x \), and \(g(x) = x \), so that \(f(x)g(x) = x \cdot x = x^2 \). Then the Product Rule gives us
\[
(x \cdot x)' = x(x)' + (x)'x = x(1) + (1)x = 2x,
\]
which agrees with \((x^2)' = 2x\).

Notice that \(f'(x)g'(x) = 1(1) = 1 \), which is quite different, and incorrect.

Example 5: Find the derivative of \((2x^2 + 3)(4x + 5)\).

Let \(f(x) = 2x^2 + 3 \), and \(g(x) = 4x + 5 \).

Then \(f'(x) = 4x \) and \(g'(x) = 4 \), so \(f(x)g(x) = (2x^2 + 3)(4x + 5) \), and

\[
(f(x)g(x))' = f(x)g'(x) + f'(x)g(x) = (2x^2 + 3)(4) + (4x)(4x + 5) = (8x^2 + 12) + (16x^2 + 20x) =
\]
Example 4: Let \(f(x) = x \), and \(g(x) = x \), so that \(f(x)g(x) = x \cdot x = x^2 \). Then the Product Rule gives us
\[
(x \cdot x)' = x(x)' + (x)'x = x(1) + (1)x = 2x,
\]
which agrees with \((x^2)' = 2x \).

Notice that \(f'(x)g'(x) = 1(1) = 1 \), which is quite different, and incorrect.

Example 5: Find the derivative of \((2x^2 + 3)(4x + 5) \).

Let \(f(x) = 2x^2 + 3 \), and \(g(x) = 4x + 5 \).

Then \(f'(x) = 4x \) and \(g'(x) = 4 \), so \(f(x)g(x) = (2x^2 + 3)(4x + 5) \), and
\[
(f(x)g(x))' = f(x)g'(x) + f'(x)g(x) = (2x^2 + 3)(4) + (4x)(4x + 5) = (8x^2 + 12) + (16x^2 + 20x) = 24x^2 + 20x + 12
\]
Example 4: Let \(f(x) = x \), and \(g(x) = x \), so that \(f(x)g(x) = x \cdot x = x^2 \). Then the Product Rule gives us

\[
(x \cdot x)' = x(x)' + (x)'x = x(1) + (1)x = 2x,
\]

which agrees with \((x^2)' = 2x \).

Notice that \(f'(x)g'(x) = 1(1) = 1 \), which is quite different, and incorrect.

Example 5: Find the derivative of \((2x^2 + 3)(4x + 5)\).

Let \(f(x) = 2x^2 + 3 \), and \(g(x) = 4x + 5 \).

Then \(f'(x) = 4x \) and \(g'(x) = 4 \), so \(f(x)g(x) = (2x^2 + 3)(4x + 5) \), and

\[
(f(x)g(x))' = f(x)g'(x) + f'(x)g(x) = (2x^2 + 3)(4) + (4x)(4x + 5) = (8x^2 + 12) + (16x^2 + 20x) =
\]

\[
24x^2 + 20x + 12
\]

We often write this calculation in a shorter form:
Example 4: Let \(f(x) = x \), and \(g(x) = x \), so that \(f(x)g(x) = x \cdot x = x^2 \). Then the Product Rule gives us
\[
(x \cdot x)' = x(x)' + (x)'x = x(1) + (1)x = 2x,
\]
which agrees with \((x^2)' = 2x \).

Notice that \(f'(x)g'(x) = 1(1) = 1 \), which is quite different, and incorrect.

Example 5: Find the derivative of \((2x^2 + 3)(4x + 5) \).

Let \(f(x) = 2x^2 + 3 \), and \(g(x) = 4x + 5 \).

Then \(f'(x) = 4x \) and \(g'(x) = 4 \), so \(f(x)g(x) = (2x^2 + 3)(4x + 5) \), and
\[
(f(x)g(x))' = f(x)g'(x) + f'(x)g(x) = (2x^2 + 3)(4) + (4x)(4x + 5) = (8x^2 + 12) + (16x^2 + 20x) = 24x^2 + 20x + 12
\]

We often write this calculation in a shorter form:
\[
(2x^2 + 3)(4x + 5)' + (2x^2 + 3)'(4x + 5) =
\]
Example 4: Let $f(x) = x$, and $g(x) = x$, so that $f(x)g(x) = x \cdot x = x^2$. Then the Product Rule gives us

$$(x \cdot x)' = x(x)' + (x)'x = x(1) + (1)x = 2x,$$

which agrees with $(x^2)' = 2x$.

Notice that $f'(x)g'(x) = 1(1) = 1$, which is quite different, and incorrect.

Example 5: Find the derivative of $(2x^2 + 3)(4x + 5)$.

Let $f(x) = 2x^2 + 3$, and $g(x) = 4x + 5$.

Then $f'(x) = 4x$ and $g'(x) = 4$, so $f(x)g(x) = (2x^2 + 3)(4x + 5)$, and

\[
(f(x)g(x))' = f(x)g'(x) + f'(x)g(x) = (2x^2 + 3)(4) + (4x)(4x + 5) = (8x^2 + 12) + (16x^2 + 20x) = 24x^2 + 20x + 12
\]

We often write this calculation in a shorter form:

\[
(2x^2 + 3)(4x + 5)' + (2x^2 + 3)'(4x + 5) = (2x^2 + 3)(4) + (4x)(4x + 5) =
\]
Example 4: Let \(f(x) = x \), and \(g(x) = x \), so that \(f(x)g(x) = x \cdot x = x^2 \). Then the Product Rule gives us
\[
(x \cdot x)' = x(x)' + (x)'x = x(1) + (1)x = 2x,
\]
which agrees with \((x^2)' = 2x \).
Notice that \(f'(x)g'(x) = 1(1) = 1 \), which is quite different, and incorrect.

Example 5: Find the derivative of \((2x^2 + 3)(4x + 5) \).

Let \(f(x) = 2x^2 + 3 \), and \(g(x) = 4x + 5 \).

Then \(f'(x) = 4x \) and \(g'(x) = 4 \), so \(f(x)g(x) = (2x^2 + 3)(4x + 5) \), and
\[
(f(x)g(x))' = f(x)g'(x) + f'(x)g(x) = (2x^2 + 3)(4) + (4x)(4x + 5) = (8x^2 + 12) + (16x^2 + 20x) = 24x^2 + 20x + 12
\]
We often write this calculation in a shorter form:
\[
(2x^2 + 3)(4x + 5)' + (2x^2 + 3)'(4x + 5) = (2x^2 + 3)(4) + (4x)(4x + 5) =
\]
Example 4: Let $f(x) = x$, and $g(x) = x$, so that $f(x)g(x) = x \cdot x = x^2$. Then the Product Rule gives us

$$(x \cdot x)' = x(x)' + (x)'x = x(1) + (1)x = 2x,$$

which agrees with $(x^2)' = 2x$.

Notice that $f'(x)g'(x) = 1(1) = 1$, which is quite different, and incorrect.

Example 5: Find the derivative of $(2x^2 + 3)(4x + 5)$.

Let $f(x) = 2x^2 + 3$, and $g(x) = 4x + 5$.

Then $f'(x) = 4x$ and $g'(x) = 4$, so $f(x)g(x) = (2x^2 + 3)(4x + 5)$, and

$$(f(x)g(x))' = f(x)g'(x) + f'(x)g(x) = (2x^2 + 3)(4) + (4x)(4x + 5) = 8x^2 + 12 + 16x^2 + 20x = 24x^2 + 20x + 12$$

We often write this calculation in a shorter form:

$$(2x^2 + 3)(4x + 5)' + (2x^2 + 3)'(4x + 5) = (2x^2 + 3)(4) + (4x)(4x + 5) = 24x^2 + 20x + 12$$
Example 6: Find the derivative of \((x^2 + 3x)(x^2 + 2)\).
Example 6: Find the derivative of \((x^2 + 3x)(x^2 + 2)\).

Let \(f(x) = x^2 + 3x\), and \(g(x) = x^2 + 2\).
Example 6: Find the derivative of \((x^2 + 3x)(x^2 + 2)\).

Let \(f(x) = x^2 + 3x\), and \(g(x) = x^2 + 2\).

Then \(f'(x) = 2x + 3\) and
Example 6: Find the derivative of \((x^2 + 3x)(x^2 + 2)\).

Let \(f(x) = x^2 + 3x\), and \(g(x) = x^2 + 2\).

Then \(f'(x) = 2x + 3\) and \(g'(x) = 2x\), so
Example 6: Find the derivative of \((x^2 + 3x)(x^2 + 2)\).

Let \(f(x) = x^2 + 3x\), and \(g(x) = x^2 + 2\).

Then \(f'(x) = 2x + 3\) and \(g'(x) = 2x\), so

\[f(x)g(x) = (x^2 + 3x)(x^2 + 2), \quad \text{and} \]

Example 6: Find the derivative of \((x^2 + 3x)(x^2 + 2)\).

Let \(f(x) = x^2 + 3x\), and \(g(x) = x^2 + 2\).

Then \(f'(x) = 2x + 3\) and \(g'(x) = 2x\), so

\[
(f(x)g(x))' =
\]

\[
f(x)g(x) = (x^2 + 3x)(x^2 + 2),
\]

and

\[
(f(x)g(x))' =
\]
Example 6: Find the derivative of $(x^2 + 3x)(x^2 + 2)$.

Let $f(x) = x^2 + 3x$, and $g(x) = x^2 + 2$.

Then $f'(x) = 2x + 3$ and $g'(x) = 2x$, so

$$f(x)g(x) = (x^2 + 3x)(x^2 + 2),$$
and

$$(f(x)g(x))' = f(x)g'(x) + f'(x)g(x).$$
Example 6: Find the derivative of \((x^2 + 3x)(x^2 + 2)\).

Let \(f(x) = x^2 + 3x\), and \(g(x) = x^2 + 2\).

Then \(f'(x) = 2x + 3\) and \(g'(x) = 2x\), so

\[
(f(x)g(x))' = f(x)g'(x) + f'(x)g(x) =
\]

\[
(x^2 + 3x)(2x) + (2x + 3)(x^2 + 2) =
\]
Example 6: Find the derivative of \((x^2 + 3x)(x^2 + 2)\).

Let \(f(x) = x^2 + 3x\), and \(g(x) = x^2 + 2\).

Then \(f'(x) = 2x + 3\) and \(g'(x) = 2x\), so

\[
f(x)g(x) = (x^2 + 3x)(x^2 + 2), \text{ and} \]

\[
(f(x)g(x))' = f(x)g'(x) + f'(x)g(x) = \\
(x^2 + 3x)(2x) + (2x + 3)(x^2 + 2) = \\
2x^3 + 6x^2 + 2x^3 + 4x + 3x^2 + 6 = \\
4x^3 + 9x^2 + 4x + 6.
\]
Example 6: Find the derivative of \((x^2 + 3x)(x^2 + 2)\).

Let \(f(x) = x^2 + 3x\), and \(g(x) = x^2 + 2\).

Then \(f'(x) = 2x + 3\) and \(g'(x) = 2x\), so

\[
f(x)g(x) = (x^2 + 3x)(x^2 + 2), \text{ and}
\]

\[
(f(x)g(x))' = f(x)g'(x) + f'(x)g(x) =
\]

\[
(x^2 + 3x)(2x) + (2x + 3)(x^2 + 2) =
\]

\[
2x^3 + 6x^2 + 2x^3 + 4x + 3x^2 + 6 =
\]

\[
4x^3 + 9x^2 + 4x + 6.
\]
Example 6: Find the derivative of \((x^2 + 3x)(x^2 + 2)\).

Let \(f(x) = x^2 + 3x\), and \(g(x) = x^2 + 2\).

Then \(f'(x) = 2x + 3\) and \(g'(x) = 2\), so

\[
f(x)g(x) = (x^2 + 3x)(x^2 + 2), \text{ and}
\]

\[
(f(x)g(x))' = f(x)g'(x) + f'(x)g(x) =
\]
\[
(x^2 + 3x)(2x) + (2x + 3)(x^2 + 2) =
\]
\[
2x^3 + 6x^2 + 2x^3 + 4x + 3x^2 + 6 =
\]
\[
4x^3 + 9x^2 + 4x + 6
\]

We write this in a shorter form:
Example 6: Find the derivative of \((x^2 + 3x)(x^2 + 2)\).

Let \(f(x) = x^2 + 3x\), and \(g(x) = x^2 + 2\).

Then \(f'(x) = 2x + 3\) and \(g'(x) = 2x\), so

\[f(x)g(x) = (x^2 + 3x)(x^2 + 2), \text{ and} \]

\[
(f(x)g(x))' = f(x)g'(x) + f'(x)g(x) = \\
(x^2 + 3x)(2x) + (2x + 3)(x^2 + 2) = \\
2x^3 + 6x^2 + 2x^3 + 4x + 3x^2 + 6 = \\
4x^3 + 9x^2 + 4x + 6
\]

We write this in a shorter form:

\[
(x^2 + 3x)(x^2 + 2)' + (x^2 + 3x)'(x^2 + 2) = \\
2x^2 + 4 + 2x + 3
\]
Example 6: Find the derivative of \((x^2 + 3x)(x^2 + 2)\).

Let \(f(x) = x^2 + 3x\), and \(g(x) = x^2 + 2\).

Then \(f'(x) = 2x + 3\) and \(g'(x) = 2x\), so

\[
f(x)g(x) = (x^2 + 3x)(x^2 + 2),
\]

so

\[
(f(x)g(x))' = f(x)g'(x) + f'(x)g(x) =
\]

\[
(x^2 + 3x)(2x) + (2x + 3)(x^2 + 2) =
\]

\[
2x^3 + 6x^2 + 2x^3 + 4x + 3x^2 + 6 =
\]

\[
4x^3 + 9x^2 + 4x + 6
\]

We write this in a shorter form:

\[
(x^2 + 3x)(x^2 + 2)' + (x^2 + 3x)'(x^2 + 2) =
\]

\[
(x^2 + 3x)(2x) + (2x + 3)(x^2 + 2) =
\]
Example 6: Find the derivative of \((x^2 + 3x)(x^2 + 2)\).

Let \(f(x) = x^2 + 3x\), and \(g(x) = x^2 + 2\).

Then \(f'(x) = 2x + 3\) and \(g'(x) = 2x\), so

\[
f(x)g(x) = (x^2 + 3x)(x^2 + 2), \text{ and}
\]

\[
(f(x)g(x))' = f(x)g'(x) + f'(x)g(x) =
\]

\[
(x^2 + 3x)(2x) + (2x + 3)(x^2 + 2) =
\]

\[
2x^3 + 6x^2 + 2x^3 + 4x + 3x^2 + 6 =
\]

\[
4x^3 + 9x^2 + 4x + 6
\]

We write this in a shorter form:

\((x^2 + 3x)(x^2 + 2)' + (x^2 + 3x)'(x^2 + 2) = \)

\((x^2 + 3x)(2x) + (2x + 3)(x^2 + 2) = \)

\[
2x^3 + 6x^2 + 2x^3 + 4x + 3x^2 + 6 =
\]
Example 6: Find the derivative of \((x^2 + 3x)(x^2 + 2)\).

Let \(f(x) = x^2 + 3x\), and \(g(x) = x^2 + 2\).

Then \(f'(x) = 2x + 3\) and \(g'(x) = 2x\), so

\[
f(x)g(x) = (x^2 + 3x)(x^2 + 2), \text{ and }
\]

\[
(f(x)g(x))' = f(x)g'(x) + f'(x)g(x) =
\]

\[
(x^2 + 3x)(2x) + (2x + 3)(x^2 + 2) =
\]

\[
2x^3 + 6x^2 + 2x^3 + 4x + 3x^2 + 6 =
\]

\[
4x^3 + 9x^2 + 4x + 6
\]

We write this in a shorter form:

\[
(x^2 + 3x)(x^2 + 2)' + (x^2 + 3x)'(x^2 + 2) =
\]

\[
(x^2 + 3x)(2x) + (2x + 3)(x^2 + 2) =
\]

\[
2x^3 + 6x^2 + 2x^3 + 4x + 3x^2 + 6 =
\]
Example 6: Find the derivative of \((x^2 + 3x)(x^2 + 2)\).

Let \(f(x) = x^2 + 3x\), and \(g(x) = x^2 + 2\).

Then \(f'(x) = 2x + 3\) and \(g'(x) = 2x\), so

\[
(f(x)g(x))' = f(x)g'(x) + f'(x)g(x) =
(x^2 + 3x)(2x) + (2x + 3)(x^2 + 2) =
2x^3 + 6x^2 + 2x^3 + 4x + 3x^2 + 6 =
4x^3 + 9x^2 + 4x + 6
\]

We write this in a shorter form:

\[
(x^2 + 3x)(x^2 + 2)' + (x^2 + 3x)'(x^2 + 2) =

(x^2 + 3x)(2x) + (2x + 3)(x^2 + 2) =
2x^3 + 6x^2 + 2x^3 + 4x + 3x^2 + 6 =
4x^3 + 9x^2 + 4x + 6
\]
The Quotient Rule

The derivative of the quotient of two non-constant functions requires an even more complicated formula:
The Quotient Rule

The derivative of the quotient of two non-constant functions requires an even more complicated formula:

\[
\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx} [f(x)] - f(x) \frac{d}{dx} [g(x)]}{[g(x)]^2}
\]
The Quotient Rule

The derivative of the quotient of two non-constant functions requires an even more complicated formula:

\[
\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx} [f(x)] - f(x) \frac{d}{dx} [g(x)]}{[g(x)]^2}
\]

or, in function notation,

\[
\left(\frac{f}{g} \right)' = \frac{g f' - f g'}{g^2}
\]
The Quotient Rule

The derivative of the quotient of two non-constant functions requires an even more complicated formula:

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx} [f(x)] - f(x) \frac{d}{dx} [g(x)]}{[g(x)]^2}$$

or, in function notation,

$$\left(\frac{f}{g} \right)' = \frac{gf' - fg'}{g^2}$$

or

$$\left(\frac{f(x)}{g(x)} \right)' = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}$$

Example 7: Let $f(x) = x + 1$, and $g(x) = x - 1$, so that
The Quotient Rule

The derivative of the quotient of two non-constant functions requires an even more complicated formula:

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx} [f(x)] - f(x) \frac{d}{dx} [g(x)]}{[g(x)]^2}$$

or, in function notation,

$$\left(\frac{f}{g} \right)^{'} = \frac{gf' - fg'}{g^2}$$

or

$$\left(\frac{f(x)}{g(x)} \right)^{'} = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}$$

Example 7: Let $f(x) = x + 1$, and $g(x) = x - 1$, so that $\frac{f(x)}{g(x)} = \frac{x + 1}{x - 1}$. Then the Quotient Rule gives us:
The Quotient Rule

The derivative of the quotient of two non-constant functions requires an even more complicated formula:

\[
\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx} [f(x)] - f(x) \frac{d}{dx} [g(x)]}{[g(x)]^2}
\]

or, in function notation,

\[
\left(\frac{f}{g} \right)' = \frac{gf' - fg'}{g^2}
\]

or

\[
\left(\frac{f(x)}{g(x)} \right)' = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}
\]

Example 7: Let \(f(x) = x + 1 \), and \(g(x) = x - 1 \), so that \(\frac{f(x)}{g(x)} = \frac{x + 1}{x - 1} \). Then the Quotient Rule gives us:

\[
\left(\frac{x + 1}{x - 1} \right)' =
\]
The Quotient Rule

The derivative of the quotient of two non-constant functions requires an even more complicated formula:

\[
\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx} [f(x)] - f(x) \frac{d}{dx} [g(x)]}{[g(x)]^2}
\]

or, in function notation,

\[
\left(\frac{f}{g} \right)' = \frac{gf' - fg'}{g^2}
\]

or

\[
\left(\frac{f(x)}{g(x)} \right)' = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}
\]

Example 7: Let \(f(x) = x + 1 \), and \(g(x) = x - 1 \), so that \(\frac{f(x)}{g(x)} = \frac{x + 1}{x - 1} \). Then the Quotient Rule gives us:

\[
\left(\frac{x + 1}{x - 1} \right)' = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2} =
\]
The Quotient Rule

The derivative of the quotient of two non-constant functions requires an even more complicated formula:

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx} [f(x)] - f(x) \frac{d}{dx} [g(x)]}{[g(x)]^2}$$

or, in function notation,

$$\left(\frac{f}{g} \right)' = \frac{g f' - f g'}{g^2}$$

or

$$\left(\frac{f(x)}{g(x)} \right)' = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}$$

Example 7: Let $f(x) = x + 1$, and $g(x) = x - 1$, so that $\frac{f(x)}{g(x)} = \frac{x + 1}{x - 1}$. Then the Quotient Rule gives us:

$$\left(\frac{x + 1}{x - 1} \right)' = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2} =$$

$$\frac{(x - 1)(x + 1)' - (x + 1)(x - 1)'}{(x - 1)^2} =$$
The Quotient Rule

The derivative of the quotient of two non-constant functions requires an even more complicated formula:

\[
\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx} [f(x)] - f(x) \frac{d}{dx} [g(x)]}{[g(x)]^2}
\]

or, in function notation,

\[
\left(\frac{f}{g} \right)' = \frac{gf' - fg'}{g^2}
\]

or

\[
\left(\frac{f(x)}{g(x)} \right) = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}
\]

Example 7: Let \(f(x) = x + 1 \), and \(g(x) = x - 1 \), so that \(\frac{f(x)}{g(x)} = \frac{x + 1}{x - 1} \). Then the Quotient Rule gives us:

\[
\left(\frac{x + 1}{x - 1} \right)' = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}
\]

\[
(x - 1)(x + 1)' - (x + 1)(x - 1)' =
\]

\[
(x - 1)(1) - (x + 1)(1) =
\]

\[
(x - 1) - (x + 1) =
\]
The Quotient Rule

The derivative of the quotient of two non-constant functions requires an even more complicated formula:

\[
\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx} [f(x)] - f(x) \frac{d}{dx} [g(x)]}{[g(x)]^2}
\]

or, in function notation,

\[
\left(\frac{f}{g} \right)' = \frac{gf' - fg'}{g^2}
\]

or

\[
\left(\frac{f(x)}{g(x)} \right)' = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2}
\]

Example 7: Let \(f(x) = x + 1 \), and \(g(x) = x - 1 \), so that \(\frac{f(x)}{g(x)} = \frac{x + 1}{x - 1} \). Then the Quotient Rule gives us:

\[
\left(\frac{x + 1}{x - 1} \right)' = \frac{g(x)f'(x) - f(x)g'(x)}{(g(x))^2} = \frac{(x - 1)(x + 1)' - (x + 1)(x - 1)'}{(x - 1)^2}
\]

\[
\frac{(x - 1)(1) - (x + 1)(1)}{(x - 1)^2} = \frac{(x - 1) - (x + 1)}{(x - 1)^2} =
\]
\[
\frac{x - 1 - x - 1}{(x - 1)^2} =
\]
\[
\frac{x - 1 - x - 1}{(x - 1)^2} = \]

\[
\frac{x - 1 - x - 1}{(x - 1)^2} = \frac{-2}{(x - 1)^2}.
\]

Notice that \(\frac{f'(x)}{g'(x)} = \)
Techniques for Finding Derivatives-6

\[
\frac{x - 1 - x - 1}{(x - 1)^2} = \frac{-2}{(x - 1)^2}.
\]

Notice that \(\frac{f'(x)}{g'(x)} = \frac{1}{1} = 1 \).
\[
\frac{x - 1 - x - 1}{(x - 1)^2} = -\frac{2}{(x - 1)^2}.
\]

Notice that \(\frac{f'(x)}{g'(x)} = \frac{1}{1} = 1\), which is quite different, and incorrect.
\[
\frac{x - 1 - x - 1}{(x - 1)^2} = \frac{-2}{(x - 1)^2}.
\]

Notice that \(\frac{f'(x)}{g'(x)} = \frac{1}{1} = 1 \), which is quite different, and incorrect.

Example 8: Differentiate \(\frac{x^2 - 4x + 2}{x + 3} \)
\[-\frac{x-1 - x - 1}{(x-1)^2} = \frac{-2}{(x-1)^2}.
\]

Notice that \(\frac{f'(x)}{g'(x)} = \frac{1}{1} = 1\), which is quite different, and incorrect.

Example 8: Differentiate \(\frac{x^2 - 4x + 2}{x + 3}\)

Solution: \(\left(\frac{x^2 - 4x + 2}{x + 3}\right)' = \)
\[
\frac{x - 1 - x - 1}{(x - 1)^2} = \frac{-2}{(x - 1)^2}.
\]

Notice that \(\frac{f'(x)}{g'(x)} = \frac{1}{1} = 1 \), which is quite different, and incorrect.

Example 8: Differentiate \(\frac{x^2 - 4x + 2}{x + 3} \)

Solution:

\[
\left(\frac{x^2 - 4x + 2}{x + 3} \right)' = \frac{(x + 3)(x^2 - 4x + 2)' - (x^2 - 4x + 2)(x + 3)'}{(x + 3)^2}
\]
$$\frac{x - 1 - x - 1}{(x - 1)^2} = \frac{-2}{(x - 1)^2}. \quad \text{Notice that } \frac{f'(x)}{g'(x)} = \frac{1}{1} = 1, \text{ which is quite different, and incorrect.}$$

Example 8: Differentiate \(\frac{x^2 - 4x + 2}{x + 3} \)

Solution:

\[
\left(\frac{x^2 - 4x + 2}{x + 3} \right)' =
\frac{(x + 3)(x^2 - 4x + 2)' - (x^2 - 4x + 2)(x + 3)'}{(x + 3)^2} =
\frac{(x + 3)(2x - 4) - (x^2 - 4x + 2)(1)}{(x + 3)^2}
\]
$$\frac{x - 1 - x - 1}{(x - 1)^2} = \frac{-2}{(x - 1)^2}.$$

Notice that \(\frac{f'(x)}{g'(x)} = \frac{1}{1} = 1 \), which is quite different, and incorrect.

Example 8: Differentiate \(\frac{x^2 - 4x + 2}{x + 3} \)

Solution:
\[
\left(\frac{x^2 - 4x + 2}{x + 3} \right)' =
\]
\[
\frac{(x + 3)(x^2 - 4x + 2)' - (x^2 - 4x + 2)(x + 3)'}{(x + 3)^2} =
\]
\[
\frac{(x + 3)(2x - 4) - (x^2 - 4x + 2)(1)}{(x + 3)^2} =
\]
\[
\frac{2x^2 + 2x - 12 - x^2 + 4x - 2}{(x + 3)^2} =
\]
\[
\frac{x - 1 - x - 1}{(x - 1)^2} = \frac{-2}{(x - 1)^2}
\]

Notice that \(\frac{f'(x)}{g'(x)} = \frac{1}{1} = 1 \), which is quite different, and incorrect.

Example 8: Differentiate \(\frac{x^2 - 4x + 2}{x + 3} \)

Solution:

\[
\left(\frac{x^2 - 4x + 2}{x + 3}\right)' = \frac{(x + 3)(x^2 - 4x + 2)' - (x^2 - 4x + 2)(x + 3)'}{(x + 3)^2}
\]

\[
= \frac{(x + 3)(2x - 4) - (x^2 - 4x + 2)(1)}{(x + 3)^2}
\]

\[
= \frac{2x^2 + 2x - 12 - x^2 + 4x - 2}{(x + 3)^2}
\]
\[
\frac{x - 1 - x - 1}{(x - 1)^2} = \frac{-2}{(x - 1)^2}.
\]

Notice that \(\frac{f'(x)}{g'(x)} = \frac{1}{1} = 1 \), which is quite different, and incorrect.

Example 8: Differentiate \(\frac{x^2 - 4x + 2}{x + 3} \)

Solution:

\[
\left(\frac{x^2 - 4x + 2}{x + 3} \right)' = \frac{(x + 3)(x^2 - 4x + 2)' - (x^2 - 4x + 2)(x + 3)'}{(x + 3)^2} = \frac{(x + 3)(2x - 4) - (x^2 - 4x + 2)(1)}{(x + 3)^2} = \frac{2x^2 + 2x - 12 - x^2 + 4x - 2}{(x + 3)^2} = \frac{x^2 + 6x - 14}{(x + 3)^2}.
\]
Example 9: Differentiate \(\frac{\sqrt{t}}{2t + 3} \)
Example 9: Differentiate \(\frac{\sqrt{t}}{2t + 3} \)

Solution: \(\left(\frac{\sqrt{t}}{2t + 3} \right)' = \)
Example 9: Differentiate $\frac{\sqrt{t}}{2t + 3}$

Solution: \[
\left(\frac{\sqrt{t}}{2t + 3} \right)' = \left(\frac{t^{\frac{1}{2}}}{2t + 3} \right)'
\]
Example 9: Differentiate \(\frac{\sqrt{t}}{2t + 3} \)

Solution: \[
\left(\frac{\sqrt{t}}{2t + 3} \right)' = \left(\frac{\frac{1}{2} t^{-\frac{1}{2}}}{2t + 3} \right)'
\]

\[
\frac{(2t + 3) \left(t^{-\frac{1}{2}} \right)' - \left(t^{-\frac{1}{2}} \right) (2t + 3)'}{(2t + 3)^2} =
\]
Example 9: Differentiate \(\frac{\sqrt{t}}{2t + 3} \)

Solution:

\[
\left(\frac{\sqrt{t}}{2t + 3} \right)' = \left(\frac{t^{\frac{1}{2}}}{2t + 3} \right)'
\]

\[
\frac{(2t + 3) \left(t^{\frac{1}{2}} \right)' - \left(t^{\frac{1}{2}} \right) (2t + 3)'}{(2t + 3)^2} = \frac{(2t + 3) \left(\frac{1}{2} t^{\frac{-1}{2}} \right) - t^{\frac{1}{2}} (2)}{(2t + 3)^2} =
\]
Example 9: Differentiate \(\frac{\sqrt{t}}{2t + 3} \)

Solution:
\[
\left(\frac{\sqrt{t}}{2t + 3} \right)' = \left(\frac{t^{\frac{1}{2}}}{2t + 3} \right)
\]
\[
= \frac{(2t + 3) \left(t^{\frac{1}{2}} \right)' - (2t + 3) t^{\frac{1}{2}} (2t + 3)'}{(2t + 3)^2}
\]
\[
= \frac{(2t + 3) \left(\frac{1}{2} t^{-\frac{1}{2}} \right) - t^{\frac{1}{2}} (2)}{(2t + 3)^2} = \frac{(2t + 3) \frac{1}{2\sqrt{t}} - 2\sqrt{t}}{(2t + 3)^2}
\]
\[
= \frac{t}{\sqrt{t}} + \frac{3}{2\sqrt{t}} - 2\sqrt{t}
\]
Example 9: Differentiate $\frac{\sqrt{t}}{2t + 3}$

Solution:

\[
(\sqrt{t} \div (2t + 3))' = \left(\frac{t^{\frac{1}{2}}}{2t + 3}\right)'
\]

\[
\frac{(2t + 3) \left(t^{\frac{1}{2}} \right)' - (t^{\frac{1}{2}}) (2t + 3)'}{(2t + 3)^2} =
\]

\[
\frac{(2t + 3) \left(\frac{1}{2} \cdot t^{-\frac{1}{2}} \right) - t^{\frac{1}{2}} (2)}{(2t + 3)^2} = \frac{(2t + 3) \frac{1}{2\sqrt{t}} - 2\sqrt{t}}{(2t + 3)^2} =
\]

\[
\frac{t}{\sqrt{t}} + \frac{3}{2\sqrt{t}} - 2\sqrt{t} = \frac{\sqrt{t} + \frac{3}{2\sqrt{t}} - 2\sqrt{t}}{(2t + 3)^2} =
\]
Example 9: Differentiate \(\frac{\sqrt{t}}{2t + 3} \)

Solution:

\[
\left(\frac{\sqrt{t}}{2t + 3} \right)' = \left(\frac{t^{\frac{1}{2}}}{2t + 3} \right)'
\]

\[
\frac{(2t + 3) \left(t^{\frac{1}{2}} \right)' - (t^{\frac{1}{2}}) (2t + 3)'}{(2t + 3)^2}
\]

\[
\frac{(2t + 3) \left(\frac{1}{2} t^{-\frac{1}{2}} \right) - \frac{1}{2} t^{-\frac{1}{2}} (2)}{(2t + 3)^2}
\]

\[
= \frac{(2t + 3) \frac{1}{2\sqrt{t}} - 2\sqrt{t}}{(2t + 3)^2}
\]

\[
= \frac{\frac{t}{\sqrt{t}} + \frac{3}{2\sqrt{t}} - 2\sqrt{t}}{(2t + 3)^2}
\]

\[
= \frac{\frac{3}{2\sqrt{t}} - \sqrt{t}}{(2t + 3)^2}
\]
Example 9: Differentiate \(\frac{\sqrt{t}}{2t + 3} \)

Solution:

\[
 \left(\frac{\sqrt{t}}{2t + 3} \right)' = \left(\frac{t^{\frac{1}{2}}}{2t + 3} \right)'
\]

\[
\frac{(2t + 3) \left(t^{\frac{1}{2}} \right)' - \left(t^{\frac{1}{2}} \right)(2t + 3)'}{(2t + 3)^2} = \frac{(2t + 3) \left(\frac{1}{2} t^{-\frac{1}{2}} \right) - t^{\frac{1}{2}} (2)}{(2t + 3)^2} = \frac{(2t + 3) \frac{1}{2\sqrt{t}} - 2\sqrt{t}}{(2t + 3)^2} = \]

\[
\frac{\sqrt{t} + \frac{3}{2\sqrt{t}} - 2\sqrt{t}}{(2t + 3)^2} = \frac{\sqrt{t} + \frac{3}{2\sqrt{t}} - 2\sqrt{t}}{(2t + 3)^2} = \frac{3}{2\sqrt{t}} - \sqrt{t} = \frac{3}{2\sqrt{t}} - \sqrt{t} (2 \sqrt{t}) = \]

\[
\frac{3}{2\sqrt{t}} - \sqrt{t} \left(\frac{2\sqrt{t}}{2\sqrt{t}} \right) = \]
Example 9: Differentiate \(\frac{\sqrt{t}}{2t + 3} \)

Solution: \(\left(\frac{\sqrt{t}}{2t + 3} \right)' = \left(\frac{t^{\frac{1}{2}}}{2t + 3} \right)' \)

\[
\frac{(2t + 3) \left(t^{\frac{1}{2}} \right)' - (t^{\frac{1}{2}}) (2t + 3)'}{(2t + 3)^2} = (2t + 3) \frac{1}{2\sqrt{t}} - 2\sqrt{t}
\]

\[
\frac{t}{\sqrt{t}} + \frac{3}{2\sqrt{t}} - 2\sqrt{t} = \frac{\sqrt{t} + \frac{3}{2\sqrt{t}} - 2\sqrt{t}}{(2t + 3)^2} = \frac{\frac{3}{2\sqrt{t}} - \sqrt{t}}{(2t + 3)^2} = \frac{3}{2\sqrt{t}} - \sqrt{t}
\]

\[
\frac{3}{2\sqrt{t}} - \sqrt{t} \left(\frac{2\sqrt{t}}{2\sqrt{t}} \right) = \frac{3}{2\sqrt{t}} - \sqrt{t}
\]
Example 9: Differentiate \(\frac{\sqrt{t}}{2t + 3} \)

Solution:

\[
\left(\frac{\sqrt{t}}{2t + 3} \right)' = \left(\frac{t^{\frac{1}{2}}}{2t + 3} \right)'
\]

\[
(2t + 3) \left(t^{\frac{1}{2}} \right)' - (t^{\frac{1}{2}}) (2t + 3)' \\
(2t + 3)^2
\]

\[
(2t + 3) \left(\frac{1}{2} t^{-\frac{1}{2}} \right) - t^{\frac{1}{2}} (2) \\
(2t + 3)^2
\]

\[
\frac{t}{\sqrt{t}} + \frac{3}{2\sqrt{t}} - 2\sqrt{t} \\
(2t + 3)^2
\]

\[
\frac{3}{2\sqrt{t}} - \sqrt{t} \\
(2t + 3)^2
\]

\[
\frac{3}{2\sqrt{t}} - \sqrt{t} \left(\frac{2\sqrt{t}}{2\sqrt{t}} \right) = \frac{3 - 2t}{2\sqrt{t}(2t + 3)^2}
\]