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Chapter 24

Preliminaries from algebra

24.1 Algebraic field extensions

Take arbitrary field extensions L|K and F |K. A homomorphism L → F will be called
a homomorphism over K if it fixes K elementwise. An automorphism of L will be
called automorphism of L|K if it is a homomorphism over K. An element b ∈ L is
algebraic over K, if it is the root of some nonzero polynomial f with coefficients from K.
For every homomorphism σ : L → F over K, the element σb is again a root of f , hence
it is algebraic over K. The relative algebraic closure of K in L is the subfield of L
consisting of all elements which are algebraic over K; in particular, it contains K. We see
that every automorphism of L|K sends the relative algebraic closure into itself.

A field extension L|K is called algebraic if every element b ∈ L is algebraic over K.
Every finite field extension L|K (i.e., [L : K] < ∞) is algebraic. A field extension of
the form K(b)|K is called simple. It is algebraic if and only if b is algebraic over K, and
this is the case if and only if the field K(b) is equal to the ring K[b]. If L|K and L′|L
are algebraic field extensions, then so is L′|K. There exist maximal algebraic extensions,
called algebraic closures of K. An algebraic closure L of K is itself algebraically
closed, that is, every algebraic extension L′|L is trivial: L′ = L. Over an algebraically
closed field, every polynomial splits into linear factors. All algebraic closures of a field K
are isomorphic over K, so we shall speak of the algebraic closure of K and denote it by
K̃. In this sense, the algebraic closure of K coincides with the relative algebraic closure
of K in every algebraically closed extension field. We often use such an identification of
isomorphic objects without further mentioning. If σ : L→ F is a homomorphism over K,
then it is injective, and we will call it an embedding of L in F over K. If in addition
F is algebraically closed, then σ can be extended to an embedding of L̃ in F over K.
In particular, if L|K is algebraic, then every embedding of L in L̃ = K̃ over K can be
extended to an automorphism of K̃|K.

Let b be algebraic over K. Then {f ∈ K[X] | f(b) = 0} is a non-trivial proper
ideal of the ring K[X]. Since K[X] is a euclidean ring with respect to the usual degree
function for polynomials, this ideal is principal. It has precisely one monic generator
f , which is called the minimal polynomial of b over K. (Recall that a polynomial
f = cnX

n + . . . + c1X + c0 is called monic if its leading coefficient cn is equal to 1.)
Thus, a polynomial g ∈ K[X] admits b as a zero if and only if f divides g in the ring K[X].
In particular, f is irreducible over K. Every embedding σ of K(b) in K̃ over K sends b to
a root σb of f . Conversely, if a is a second root of f , then there is an isomorphism σ of the
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fields K(b) = K[b] and K(a) = K[a] over K which sends b to a. This isomorphism extends
to an automorphism of K̃|K. Hence, the finite set of roots of f in K̃ coincides with the set
{σb | σ is an automorphism of K̃|K}; its elements are called the conjugates of b . Two
elements a, b ∈ K̃ are called conjugate over K if there exists an automorphism σ of K̃|K
such that a = σb.

Lemma 24.1 a) Let g, h ∈ K[X]. Then g is prime to h in the ring K[X] if and only if
g and h admit no common root in K̃.

b) Assume that gh ∈ K[X] with g, h ∈ K̃[X] such that g is monic, g and h admit
no common root in K̃ and the set of roots of g in K̃ is closed under conjugates. Then
g, h ∈ K[X].

Proof: a): If f is a nonconstant common divisor of g and h, then it admits a root in
K̃, which is thus a common root of g and h. Conversely, if b is a common root of g and
h in K̃, then the minimal polynomial of b over K divides both g and h, showing that g is
not prime to h in K[X].

b): Suppose that we have verified our assertion for all products gh with deg g < n (for
deg g = 1, the assertion is trivial). Now let g be of degree n and gh satisfy the assumptions
of part b). Let b be a root of g in K̃. Since it is also a root of gh ∈ K[X], the minimal
polynomial f of b over K must divide gh. Every root of f is a conjugate of b over K and
by assumption, it is also a root of g. If it appears m times in f , then it also appears m
times in g, because g and h have no roots in common. Hence, f divides g in K̃[X]. So
we can write gh = fg̃h with g̃ ∈ K̃[X] of degree < n. Since f and gh are elements of
K[X], we can apply the euclidean algorithm (or in other words, the polynomial division
with remainder) to f and gh in K[X]. The result can not be different from the result in
the ring K̃[X], which shows that g̃h ∈ K[X]. Now we can apply the induction hypothesis
to conclude that g̃, h ∈ K[X] and thus also g = fg̃ ∈ K[X]. �

If P is any property of field extensions, then we will say that L|K is a tower of
extensions with property P if there are intermediate fields K = K0 ⊂ K1 ⊂ . . . ⊂
Kn = L such that Ki|Ki−1 are extensions with property P , for i = 1, . . . , n.

In the following, let L|K be an algebraic extension, not necessarily finite. It is called
normal if every automorphism of K̃|K sends L into itself. In particular, K̃|K is normal.
If K ′|K is a subextension of L|K and L|K is normal, then also L|K ′ is normal since every
automorphism of K̃|K ′ is an automorphism of K̃|K. On every simple extension K(b) of
K, the restriction of a given automorphism σ of K̃|K is uniquely determined by the root
σb of the minimal polynomial of b over K. Consequently, K(b)|K is normal if and only if
all conjugates of b lie in K(b). Moreover, it shows that the embeddings of K(b) in K̃ over
K correspond bijectively to the roots of the minimal polynomial f of b over K. Since deg f
is equal to the degree [K(b) : K] of the extension K(b)|K, and since f has at most deg f
many distinct roots in K̃, it follows that there are at most [K(b) : K] distinct embeddings
of K(b) in K̃ over K.

As L|K is algebraic, every element b ∈ L is already contained in the finite algebraic
subextension K(b)|K. This shows that L is the union over all finite subextensions. So we
can write L =

⋃
i∈I Li where Li runs through all finite extensions of K which are contained

in L (the index set may be taken e.g. to be a subset of the cardinal 2|L|). But it also suffices
to take the fields Li to be simple extensions of K. On the other hand, every finite extension
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L|K is a tower of simple extensions. The degree of field extensions is multiplicative, that
is, if L|K ′ and K ′|K are finite extensions, then [L : K] = [L : K ′] · [K ′ : K]. Since also
the number of embeddings is multiplicative in a similar way, one deduces by induction on
the extensions in the tower that every finite extension L|K admits at most [L : K] distinct
embeddings in K̃ over K. The number of distinct embeddings is called the separable
degree of L|K, denoted by [L : K]sep . If [L : K] = [L : K]sep , then L|K is called
separable. Hence K(b)|K is separable if and only if the minimal polynomial of b has no
multiple roots; in this case, the element b and its minimal polynomial are called separable
over K. At the other extreme, an arbitrary algebraic extension L|K is called purely
inseparable if it only admits one embedding in K̃ over K (which is the identity if we
assume L to lie in K̃, as we usually do). Hence K(b)|K is purely inseparable if and only
if its separable degree is 1, i.e. if the minimal polynomial of b admits only b as a root; in
this case, the element b and its minimal polynomial are called purely inseparable over
K. We note that

The extension L|K is purely inseparable if and only if every b ∈ L is purely inseparable
over K.

Indeed, if K(b) would admit two distinct embeddings in K̃ over K, then these could be
extended to distinct embeddings of L in K̃ over K. If on the other hand, L|K admits two
distinct embeddings, then there must be some b ∈ L on which these act differently.

An element a is a multiple root of a polynomial f if and only if it is also a root of the
derivative f ′ of f . If a is a simple root of some polynomial over K, then it is also a simple
root of its minimal polynomial over K. Hence, an element a in an arbitrary extension of
K is separable algebraic over K if (and only if) there is some f ∈ K[X] such that f(a) = 0
and f ′(a) 6= 0. See Lemma 9.12 for a “multidimensional” version of this criterion, working
simultaneously for n elements by use of n polynomials.

If L|K is finite and separable, then it is simple (cf. [LANG3], Chapter VII, §6, Theorem
14). An element b ∈ L satisfying L = K(b) is called a primitive element.

Like the degree [L : K], also the separable degree [L : K]sep is multiplicative, that is, if
L|K ′ and K ′|K are finite extensions, then [L : K]sep = [L : K ′]sep · [K ′ : K]sep . From this,
it follows that L|K is separable if and only if L|K ′ and K ′|K are separable. In particular,
every subextension of a finite separable extension is separable. So we may generalize our
definition as follows: An arbitrary algebraic extension L|K is called separable if every
finite subextension Li|K is separable. If L|K is separable and normal, then we will call
it a Galois extension. Since we are concerned with infinite Galois theory, we do not
require the property “finite” for Galois extensions. If L|K is normal, then we shall use the
notation GalL|K for the group of all automorphisms of L|K, and we call it the Galois
group of L|K, even if L|K is not separable. We use the abbreviation GalK for Gal K̃|K
and call it the absolute Galois group of K.

Later, we will define the notion “separable” also for arbitrary, not necessarily algebraic
extensions. So we will speak henceforth of separable algebraic extensions if we want to
restrict our arguments to algebraic extensions. In contrast to this, purely inseparable
and normal will always mean that the extension is algebraic.

Let 1 denote the multiplicative unit in the field K and n · 1 the result of adding it up
n times. If there is a smallest number p such that p · 1 = 0, then p is a prime number; it is
called the characteristic of K. If there is no such p, then we say that the characteristic
of K is 0. If the characteristic of K is p > 0, then the smallest field contained in K is Fp,
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the field with p elements. If the characteristic of K is 0, then the smallest subfield of K
is Q, the rationals. The smallest subfield of K is called the prime field of K. A field
extension L|K is called finitely generated if L = K(x1, . . . , xn) for suitable elements
x1, . . . , xn ∈ L. Every finitely generated algebraic extension is a finite extension. The field
K is called a finitely generated field if it is a finitely generated field extension of its
prime field.

Assume L|K to be a Galois extension of degree p a prime which is not equal to the
characteristic of K. If K contains a primitive p-th root of unity, then L contains an element
b such that c := bp ∈ K and L = K(b). The minimal polynomial of b over K is Xp − c.
This follows from Kummer Theory; cf. [LANG3], Chapter VIII, §8. Now assume that
L|K is a Galois extension of degree p = charK. Then L contains an element b such that
c := bp − b ∈ K and L = K(b). This assertion is a special case of a more general result
proved in Section 12.6; see Corollary 12.29. See also [LANG3], Chapter VIII, §8. The
minimal polynomial of b over K is Xp − X − c. Such a polynomial is called an Artin-
Schreier polynomial. The extension is said to be an Artin-Schreier extension, and
b is an Artin-Schreier root of f and an Artin-Schreier generator of L|K. We
frequently use the abbreviation ℘(X) for the polynomial Xp − X. This polynomial is
additive, that is, ℘(b + b′) = ℘(b) + ℘(b′) for all b, b′ ∈ L. This is a consequence of the
additivity of the Frobenius endomorphism x 7→ xp of a field of characteristic p; see
Section 24.7 below. Note in particular that if b is a root of Xp −X − c and b′ is a root of
Xp − X − c′, then b + b′ is a root of Xp − X − (c + c′). From the special case c′ = 0 we
see that the roots of Xp −X − c are of the form b + b′ with b′ a root of Xp −X. We can
observe at once that 0 and 1 are roots of Xp −X. But in view of the additivity, if 1 is a
root, then also n · 1 for every n ∈ N. Since the characteristic of K was assumed to be p,
the roots of Xp −X are precisely 0, 1, . . . , p− 1. Consequently:

Lemma 24.2 Let K be a field of characteristic p > 0 and b ∈ K̃ a root of the Artin-
Schreier polynomial Xp − X − c with c ∈ K. Then all roots of Xp − X − c are given by
b, b + 1, . . . , b + p− 1. In particular, if Xp −X − c has a root in K, then it splits over K
into linear factors.

We also use the name “Artin-Schreier extension” for certain extensions of valued fields
of characteristic 0; see Section 6.5 for the definition.

Take two subextensions E|K and F |K of an arbitrary field extension Ω|K. The inter-
section E ∩ F is again a subfield of Ω containing K. The field compositum of E and
F (in Ω), denoted by E.F , is the smallest subfield of Ω which contains both E and F . If
E.F = Ω and E∩F = K, then E is called a field complement for F in Ω over K. Note
that every two arbitrary field extensions of K can be embedded in a common extension
field Ω (that is, the theory of fields has the amalgamation property, see Section 24.5). In
this extension field, their field compositum can be defined as above. But it may depend
on the embeddings (for instance, distinct embeddings of non-normal algebraic extensions
may produce non-isomorphic composita). Every element in the field compositum can be
written as (x1y1 + . . . + xmym)/(x′1y

′
1 + . . . + x′ny

′
n) for suitable m,n ∈ N and xi , x

′
i ∈ E ,

yi , y
′
i ∈ F . If both extensions E|K and F |K are algebraic, then so is E.F |K . If they are

normal in addition, then every automorphism of K̃|K sends E and F and hence also E.F
into itself, showing that also E.F |K is normal.

Let L|K be an algebraic and K ′|K an arbitrary field extension. Then K̃ ′ contains

K̃ = L̃ and thus, we can take the compositum L.K ′ inside K̃ ′ (again, it depends on the
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embedding of L in K̃, and there are different composita if L|K is not normal). Every basis
of L|K is also a system of generators of L.K ′|K ′, but it may not be a basis anymore. So
if L|K is finite, we have that

[L.K ′ : K ′] ≤ [L : K] .

In other words, the minimal polynomial of an element b ∈ L may not be irreducible over
K ′, but as we know already, it is divided by the minimal polynomial of b over K ′. If
[L.K ′ : K ′] = [L : K], then it follows that for every element b ∈ L its minimal polynomial
over K will be irreducible over K ′ and thus be the minimal polynomial of b over K ′.
Otherwise, we would have that [K ′(b) : K ′] < [K(b) : K] which yields that [L.K ′ : K ′] =
[L.K ′ : K ′(b)] · [K ′(b) : K ′] < [L.K ′ : K ′(b)] · [K(b) : K] ≤ [L : K(b)] · [K(b) : K] = [L : K]
since K ′(b) = K(b).K ′. It follows that if [L.K ′ : K ′] = [L : K] and L.K ′|K ′ is separable
resp. purely inseparable, then so is L|K.

Even in the case of an infinite algebraic extension L|K, every finite subextension L′|K ′
of L.K ′|K ′ is contained in Li.K

′|K ′ for some finite subextension Li|K of L|K. Indeed,
L′ is generated over K ′ by finitely many elements b1, . . . , bn ∈ L.K ′. To write down the
elements b1, . . . , bn , only finitely many elements c1, . . . , ck ∈ L (and finitely many elements
in K ′) are needed. Hence, Li := L(c1, . . . , ck) is a finite extension of L, and L′ ⊂ Li.K

′.
Now assume in addition that L|K is separable. Then also Li|K is separable, and it is thus
simple; let b be a primitive element. Then the minimal polynomial f of b over K has no
multiple root. The same is true for the minimal polynomial of b over K ′ since it is a divisor
of f . This shows that K ′(b)|K ′ and thus also its subextension L′|K ′ is separable. In this
way, it is shown that every finite subextension of L.K ′|K ′ is separable algebraic. We have
thereby proved:

If L|K is separable algebraic and K ′|K is an arbitrary field extension, then L.K ′|K ′ is
separable algebraic.

It follows by induction that the compositum of finitely many separable algebraic extensions
is again separable. In particular, if every extension K(b)|K for b ∈ L is separable, then
so is every finite subextension L|K since it is the compositum of finitely many simple
subextensions. Conversely, if L|K is separable, then so is the finite subextension K(b)|K.
We have proved:

The extension L|K is separable if and only if every b ∈ L is separable over K.

We shall now prove the transitivity of separable extensions:

Lemma 24.3 Let L|K be an algebraic extension with subextension K ′|K. Then L|K is
separable if and only if L|K ′ and K ′|K are separable.

The proof of this lemma uses a typical argument which connects finite with infinite ex-
tensions. For later use, we formulate this argument in more generality than we need it
here.

Lemma 24.4 Let K ′|K be an arbitrary and L′|K ′ a finite extension. Then there exists
a finitely generated subextension K0|K of K ′|K and a finite subextension L0|K0 of L′|K0

such that L′ = L0.K
′ and [L′ : K ′] = [L0 : K0]. It follows that if L′|K ′ is separable resp.

purely inseparable, then so is L0|K0.
If SK′ and SL′ are any finite sets of elements in K ′ and L′ respectively, then K0 and

L0 can be chosen such that SK′ ⊂ K0 and SL′ ⊂ L0 . If K ′|K is algebraic, then K0|K and
L0|K are finite.
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Proof: Without loss of generality, we can enlarge the set SL′ by finitely many elements
such that it generates the finite extension L′|K ′. Write SL′ = {b1, . . . , bn}. Now we form a
finite set S1 of elements in K ′ by adjoining to SK′ the coefficients of the minimal polynomial
of b1 over K ′. Every element of K ′(b1, . . . , bk) is a rational function in b1, . . . , bk which
involves finitely many coefficients from K ′. So for 1 ≤ k < n, we form Sk+1 by adjoining
to Sk the finitely many elements of K ′ that appear as coefficients in the rational functions
which are the coefficients of the minimal polynomial of bk+1 over K ′(b1, . . . , bk). We obtain
a finite set Sn of elements in K ′, and we set K0 := K(Sn). We obtain that [K ′(b1) : K ′] =
[K0(b1) : K0] and [K ′(b1, . . . , bk+1) : K ′(b1, . . . , bk)] = [K0(b1, . . . , bk+1) : K0(b1, . . . , bk)]
for 1 ≤ k < n. It follows that L0 := K0(b1, . . . , bn) = K0(SL′) satisfies L′ = L0.K

′ and
[L′ : K ′] = [L0 : K0]. By construction, SK′ ⊂ K0 and SL′ ⊂ L0 . Further, K0|K is a finitely
generated subextension of K ′|K. If the latter is algebraic, then also K0|K is algebraic and
thus finite.

The assertion about separability resp. inseparability follows directly from the equality
[L′ : K ′] = [L0 : K0], as we have shown earlier. �

Now we are able to prove Lemma 24.3. Let L|K be algebraic with subextension K ′|K.
Assume first that L|K is separable. Then it follows directly from the definition that also
K ′|K is separable. Let L′|K ′ be a finite subextension of L|K ′, and choose K0 and L0 as in
the above lemma. Then L0|K is a finite extension, so it is separable since L|K is supposed
to be separable. By what we have shown earlier, L′ = L0.K

′ is separable over K ′. This
proves that L|K ′ is separable.

For the converse, assume that L|K ′ and K ′|K are separable. Let E|K be a finite
subextension of L|K and L′ = E.K ′. As a finite subextension of L|K ′, the extension L′|K ′
is separable and thus simple. Let b be a primitive element of L′|K ′. Then its minimal
polynomial over K ′ has no multiple roots. Choose K0 and L0 as in the above lemma such
that L0 contains b and some set of generators of the finite extension E|K. Then E ⊂ L0 .
Since K ′|K is separable, so is its finite subextension K0|K. Since [L0 : K0] = [L′ : K ′] =
[K ′(b) : K ′], we see that b also generates L0 over K0 and that its minimal polynomial over
K0 is the same as over K ′. Since this minimal polynomial has no multiple roots, it follows
that L0|K0 is separable. By what we have proved already about finite extensions, L0|K
and thus also E|K is separable. This completes our proof. �

If E|K is an arbitrary subextension of a Galois extension L|K, then L|E is separable
and normal and thus again a Galois extension (since L.E = L). In this case, GalL|E may
be identified in a natural way with the subgroup {σ ∈ GalL|K | ∀x ∈ E : σx = x} of
GalL|K. For σ ∈ GalL|K, the restriction of σ to E will be denoted by resE(σ). If E|K
is normal, then the restriction map

resE : GalL|K −→ GalE|K

is a group epimorphism since every automorphism of E|K can be extended to an automor-
phism of L|K. Note that GalL|E = res−1

E (1).

If E|K and F |K are separable algebraic extensions, then by what we have shown,
E .F |F is separable and thus, E .F |K is separable. That is, the compositum of two separable
algebraic extensions is again separable algebraic. Since we have shown the analogue also for
normal extensions, we conclude that the compositum of two Galois extensions is again a
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Galois extension. It also follows that an algebraic extension L|K generated by the elements
bi , i ∈ I, is normal (resp. separable) if and only if every extension K(bi)|K is. Further, we
see that the composition of all separable algebraic subextensions of an arbitrary extension
L|K is itself a separable algebraic subextension of L|K, and it is thus the maximal one.
We will call it the relative separable-algebraic closure of K in L and denote it by
(L|K)sep. In fact, (L|K)sep consists of all elements b ∈ L such that K(b)|K is separable
algebraic. The maximal separable algebraic extension of K is (K̃|K)sep; it will be called
the separable-algebraic closure of K and denoted by Ksep. It consists of all elements
(in K̃) which are separable algebraic over K.

To every algebraic extension L|K we can find a normal extension L′|K containing L.
The minimal one is found by adjoining, for every b ∈ L, all roots of the minimal polynomial
of b over K. This field L′ is called the normal hull of L over K. If L|K is finite, then
so is L′|K. An arbitrary algebraic extension L|K is normal if and only if it contains the
normal hull of every finite subextension Li|K. If L|K is normal, then L is the union over
all finite normal subextensions; in Section 24.4, we shall describe the connection between
their Galois groups and the Galois group of L|K.

For every algebraic extension L|K, every homomorphism σ of L into L over K is an
automorphism of L|K. Indeed, it is injective since it is a non-trivial field homomorphism.
If b ∈ L then σnb ∈ L for every n ∈ N. Since b has only finitely many conjugates (and σ
is invertible), there is some n > 0 such that σnb = b. Hence, b = σ(σn−1b) ∈ σL, which
proves that σ is surjective.

The following is a criterion for the existence of embeddings of infinite algebraic exten-
sions:

Theorem 24.5 (Compactness Principle for Algebraic Extensions)
Let L|K be an algebraic field extension and L =

⋃
i∈I Li where the Li run through all finite

subextensions of L|K. Let F |K be an arbitrary field extension. If for every i ∈ I, the field
Li admits an embedding ιi in F over K, then there exists an embedding ι of L in F over
K such that

∀i ∈ I : resLi
(ι) = resLi

(ιj) for some j ∈ I such that Lj ⊃ Li . (24.1)

If L|K is normal then the assertion remains true if we let Li run through all finite normal
subextensions of L|K.

We will prove the theorem in the next section using a compactness principle for inverse
limits. The following corollary illustrates the use of assertion (24.1). In fact, this assertion
implies that the embedding ι inherits the universal properties that all ιi have in common.

Corollary 24.6 Let (L, v)|(K, v) be an algebraic and (F,w)|(K, v) an arbitrary extension
of valued fields. If every finite subextension of L|K admits a valuation preserving embedding
ι in (F,w) over (K, v), then so does (L, v). If in addition, vL admits an embedding ρ in
wF over vK and L admits an embedding σ in F over K and if the given embeddings of the
finite subextensions respect the corresponding restrictions of ρ and σ, then ι may be chosen
as to respect ρ and σ.

Proof: Since every b ∈ L is contained in some Li , the embbeding ι chosen according to
the foregoing theorem will satisfy wιb ≥ 0 ⇔ wιjb ≥ 0 ⇔ vb ≥ 0, resp. (ιb)w = (ιjb)w =
σbv if vb = 0, resp. wιb = wιjb = ρvb. �
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Exercise 24.1 Give an example where L|K ′ and K ′|K are finite normal extensions, but L|K is not
normal.

24.2 Inverse limits

Suppose that (I,≤) is a partially ordered set. A family {Xi, πji | i, j ∈ I , i ≤ j} consisting
of topological spaces Xi and continuous maps πji : Xj → Xi is called an inverse system
(or projective system) if it satisfies

(INV0) for all i, j ∈ I there is k ∈ I such that i ≤ k and j ≤ k ,

(INV1) πii is the identity map on Xi for every i ∈ I ,

(INV2) πki = πji ◦ πkj for all i, j, k ∈ I such that i ≤ j ≤ k.

The inverse limit (or projective limit) of an inverse system {Xi, πji} is defined to be
the subspace

lim←−Xi := {(x`)`∈I ∈
∏
i∈I

Xi | πji(xj) = xi whenever i ≤ j}

of the cartesian product
∏

i∈I Xi which is endowed with the product topology. Recall that
the product topology is the coarsest topology such that for all i ∈ I, the projection pri
onto the i-th component Xi is continuous. It has a basis consisting of all sets of the form∏

i∈I Ui where Ui is an open subset of Xi for all i ∈ I and Ui = Xi for almost all i. If all
Xi are hausdorff, then also the product topology is hausdorff, and X := lim←−Xi is a closed

subspace of the product. The latter is seen as follows. Let (xi)i∈I /∈ X . Then there are
i, j ∈ I, i ≤ j, such that πji(xj) 6= xi . If Xi is hausdorff, then we may choose disjoint open
neighborhoods Ui and U ′i of xi and πji(xj) respectively. Now Ui × π−1

ji (U ′i) ×
∏

k 6=i,j Xk is
an open neighborhood of (xi)i∈I whose intersection with X is empty. This proves that the
complement of X in the product is open. The argument also shows that for i ≤ j and Xi
hausdorff, the set Xji := {(x`)`∈I | πji(xj) = xi} is closed in

∏
Xi. Observe that

X =
⋂
i≤j

Xji .

Lemma 24.7 The inverse limit X of an inverse system of nonempty compact hausdorff
spaces Xi is a nonempty compact hausdorff space.

Proof: By Tychonoff’s Theorem, the product of the compact spaces Xi is compact.
Since all Xi are assumed to be hausdorff, their product is also hausdorff, and X is a closed
subspace of the product, as we have seen above. Hence, X is hausdorff and compact. It
remains to show that X is nonempty. By the compactness of the product space, this will
follow if we are able to show that the intersection of finitely many of the closed sets Xji is
nonempty. In such a finite intersection, only finitely many indeces i, j ∈ I are involved, and
by (INV0) we may choose k ∈ I which is bigger than all of them. Since Xk is nonempty by
assumption, the set {(xi)i∈I | xk ∈ Xk and πki(xk) = xi whenever i ≤ k} is a nonempty
subset of the intersection. �
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The restriction of the projection pri to X is a map from X into Xi and will be denoted by
πi. These maps satisfy πi = πji ◦ πj whenever i ≤ j. Observe that axiom (INV0) plays a
crucial role in the above proof. Using again this axiom, the reader may show that a basis
for the topology of X is given by the sets π−1

i (Ui) where i ∈ I and Ui is an open subset of
Xi . (For the product space, the sets pr−1

i (Ui) will in general only form a subbasis.)

Note that the foregoing lemma immediately applies to the case of finite sets Xi because
they are compact under the discrete topology. This is the case of most of our applications.
In particular, we are now able to prove the Compactness Principle for Algebraic Extensions.

Proof of Theorem 24.5: Let the notations be as in that theorem. We order I by defining
i ≤ j :⇔ Li ⊂ Lj . Then (INV0) is satisfied since every two finite extensions Li , Lj are
contained in the finite extension Li . Lj which is equal to Lk for some k ∈ I. (The same
argument works for the finite normal extensions.) For i ∈ I, we take Xi to consist of all
embeddings of Li in F over K which are the restriction of ιj to Li for some j ≥ i. The map
πji is just given by restricting an embedding of Lj to the subfield Li . Then axioms (INV1)
and (INV2) are satisfied. Since every Li|K is a finite extension, every Xi is finite; it is
nonempty since it contains ιi . An application of Lemma 24.7 now shows that the inverse
limit of {Xi , πji} is nonempty. Let (τi)i∈I be an element of it. We define an embedding of
L in F over K as follows. For every a ∈ L we find some i ∈ I such that a ∈ Li , and we
set ιa = τia. The fact that (τi)i∈I is an element of the inverse limit, guarantees that ι is
welldefined. We have resLi

(ι) = τi which by definition of Xi is the restriction of ιj for some
j ≥ i. �

Note that the proof also indicates the existence of a bijection between the set of all em-
beddings of L in F over K and the inverse limit of {Xi , πji} where Xi is the set of all
embeddings of Li in F over K. The above proof shows how to associate an embedding to
every element of the inverse limit. Surjectivity follows from the fact that for ι an embed-
ding of L, the restrictions πiι of ι to Li are compatible with the restrictions πji, that is,
πjiπjι = πiι. Injectivity follows from the fact that every element of L is contained in some
Li .

Setting F = L and assuming that L|K is normal, we obtain a bijection between GalL|K
and the inverse limit of {GalLi|K , πji} where the Li run through all finite normal subex-
tensions of L|K and the maps πji : GalLj|K → GalLi|K are again given by restriction.
Note that in this case they are surjective since every automorphism of Li|K may be ex-
tended to an automorphism of Lj|K if Li ⊂ Lj . The inverse limit inherits the group
structure of the groups GalLi|K by componentwise composition (since composition com-
mutes with restriction). With this group structure, the above bijection turns into a group
isomorphism

GalL|K ∼= lim←−GalLi|K .

For every i, the map πi is the restriction resLi
: GalL|K → GalLi|K.

24.3 Topological and profinite groups

A topological group is a group G endowed with a topology such that the maps (x, y) 7→
xy and x 7→ x−1 are continuous. It follows that for every g ∈ G, the maps x 7→ gx ,
x 7→ xg and x 7→ x−1 are homeomorphisms. Hence, a subgroup H of G is open if and only
if the coset gH is open, and the same holds for “closed” in the place of “open”. A closed
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subgroup H of finite index in G is open since its complement is the union of finitely many
cosets gH 6= H and every coset gH is a closed set. Conversely, every open subgroup H is
closed since its complement is the union of the open cosets gH 6= H. In every compact
topological group an open subgroup H must be of finite index. Indeed, the cosets gH form
an open covering of G, and since it does not admit a proper subcovering, it must itself be
finite, that is, there are only finitely many cosets. Hence for compact topological groups,
the open subgroups are precisely the closed subgroups of finite index.

By a topological isomorphism of topological groups we will mean a continuous
group isomorphism with continuous inverse. In particular, a topological isomorphism is
a homeomorphism. Note that a group homomorphism f : G → G1 of topological groups
is continuous if and only if for every (open) neighborhood U1 of 1 ∈ G1 there exists a
neighborhood U of 1 ∈ G such that f(U) ⊂ U1 . Similarly, f is open if and only if for
every (open) neighborhood U of 1 ∈ G there exists a neighborhood U1 of 1 ∈ G1 such that
U1 ⊂ f(U) . This follows from the fact that for every element g ∈ G, the neighborhood
filter of 1 is sent onto the neighborhood filter of g by the homeomorphism x 7→ gx .

Let us require in addition for a topological group G that the subset {1} be closed. Then
for every g ∈ G, the subset {g} is closed. With this proviso, topological groups have the
following properties.

Every topological group is hausdorff. Indeed, let a, b ∈ G with a 6= b. Then G\{b} is an
open neighborhood of a. By the continuity of (x, y) 7→ xy there exist open neighborhoods
Ua of a and U1 of 1 such that Ua · U1 ⊂ G \ {b}. It follows that Ua ∩ bU−1

1 = ∅. Since
x 7→ x−1 is a homeomorphism, bU−1

1 is an open neighborhood of b.

The kernel of a continuous homomorphism of topological groups is a closed normal
subgroup since it is the preimage of the closed set {1}. For the facts stated in the following,
cf. [PON], Chapter III, §20. If H is a closed normal subgroup of G, then the quotient
topology on G/H turns G/H into a topological group and the canonical epimorphism
G → G/H will be continuous and open. Recall that the quotient topology is the finest
topology on G/H such that G → G/H is continuous. If G admits a continuous open
epimorphism f onto the topological group G1, then its kernel H is a closed normal subgroup
of G, and f induces a topological isomorphism between G/H and G1 . Note that if G is
compact, then the epimorphism f : G→ G1 is open already if it is continuous (cf. [PON]).
Here, we shall prove this assertion under the assumption that in both groups G and G1 ,
the open normal subgroups of G form a basis for the neighborhood filter of 1 (which is
always the case for profinite groups, as we will see later). It suffices to show that for every
open normal subgroup H of G, its image f(H) is an open subgroup of G1 . We know
already that in compact topological groups, the open subgroups are precisely the closed
subgroups of finite index. Hence, H is closed and thus compact, and since the continuous
homomorphism f sends compact sets onto compact sets, also f(H) is closed. On the other
hand, (G : H) is finite, and since f is an epimorphism, also (G1 : f(H)) is finite. Therefore,
f(H) is an open subgroup of G1 (in fact, it is also normal since f is an epimorphism). Note
that under the same condition, a group homomorphism f : G→ G1 is continuous already
if for every open normal subgroup H1 of G1 there is an open normal subgroup H of G with
f(H) ⊂ H1 .

Let H and N be closed subgroups of G. Then their intersection H ∩N is again a closed
subgroup ofG. Their group compositumH.N is defined to be the closure of the subgroup
generated by H and N , i.e. the intersection of all closed subgroups containing H and N . If
the topology on G is discrete, (which we will always assume if G is finite or no topology is
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specified), then this compositum coincides with the subgroup generated by H and N . In
contrast to “H.N”, the notation HN indicates the set of products {h ·n | h ∈ H , n ∈ N}.
If N is a normal subgroup of G, then HN = NH and the group compositum H.N is equal
to HN . Further, if H.N = G and H ∩N = {1}, then H is called a group complement
of N in G.

Let H and N be closed subgroups of the compact topological group G. If N is normal
in G, then there is a topological isomorphism between H/(H ∩ N) and HN/N . This is
seen as follows. Let f be the restriction of the canonical epimorphism HN → HN/N to
the subgroup H of HN . Then f is still continuous and surjective. Since H is compact,
f is also open. Hence, it induces a topological isomorphism H/kerf ∼= HN/N . Since
kerf = H ∩ N , this proves our assertion. Note that it is in general not true without the
assertion that G be compact; for an example, see [BOU2], Chapter III, §2.7 . In contrast
to this, if H is also a normal subgroup and contains N , then G/H and (G/N)/(H/N) are
topologically isomorphic, even if G is not compact (cf. [BOU2], Chapter III, §2.7, Corollary
to Proposition 22).

Let G be the inverse limit of an inverse system {Gi, πji} of topological groups Gi . Since
the topology on G is the coarsest such that all projections πi : G → Gi are continuous,
the maps (x, y) 7→ xy and x 7→ x−1 will be continuous on G if multiplication is defined
componentwise. Hence, the inverse limit of an inverse system {Gi, πji} of topological groups
is again a topological group. Further, {1} =

⋂
i π
−1
i (1) is closed (since we have assumed

that {1} is closed in every Gi ).

The inverse limit G of an inverse system of finite groups Gi (which are endowed with
the discrete topology) is called a profinite group. By Lemma 24.7, G is hausdorff and
compact. Therefore, for profinite groups all results hold that we stated for compact topo-
logical groups (with {1} a closed subgroup). As we have noted in the last section, a basis
for the topology of G is given by the sets π−1

i (Ui) where i ∈ I and Ui is an open subset of
Gi . Since {gi} is open in Gi for every gi ∈ Gi and π−1

i (Ui) is the union over all π−1
i (gi)

with gi ∈ Ui , we find that the sets π−1
i (gi), gi ∈ Gi , i ∈ I, form a basis of the topology on

G. Since {gi} is also closed in Gi , the set π−1
i (gi) is at the same time open and closed. If

g, h ∈ G and g 6= h, then there is i ∈ I such that πig 6= πih and consequently, g and h lie
in the disjoint open and closed sets π−1

i (πig) and π−1
i (πih) respectively. This proves that

the connected component of every g ∈ G is just {g}, that is, G is totally disconnected.

The set π−1
i (1) is the kernel of the projection πi , and thus it is an open normal subgroup

of G. Since the sets π−1
i (gi) form a basis of the topology, an open set containing 1 must

contain at least one set of the form π−1
i (1). Consequently, the open normal subgroups of

G form a basis for the neighborhood filter of 1 ∈ G. Their intersection is {1}; indeed, for
every g ∈ G\{1} there is some i ∈ I such that πig 6= 1 ∈ Gi and consequently, g /∈ π−1

i (1).

Every closed subgroup H of G is equal to the intersection of all open subgroups con-
taining H. This is seen as follows. Let g ∈ G be an element which belongs to every open
subgroup of G that contains H. For every open normal subgroup N of G, the group HN
is closed, and since it contains N , it is also of finite index in G. Thus, HN is open. By
assumption, g ∈ HN and thus, gN∩H 6= ∅. Since N and H are closed, so is gN∩H. Since
any finite intersection of open normal subgroups Ni is again an open normal subgroup N ,
any finite intersection

⋂
i(gNi∩H) = g

⋂
iNi ∩H = gN∩H is nonempty. By compactness,

the intersection of all of these sets, N running through all open normal subgroups of G, is
nonempty. That is, there is some h ∈ H such that h ∈ gN for every such N . But the in-
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tersection of all open normal subgroups N is {1}, showing that g = h ∈ H. This completes
the proof. If in addition also H is normal, then every HN is normal and our argument
shows that H is equal to the intersection of all open normal subgroups containing H.

Let Ni , i ∈ I, be a family of open normal subgroups of the profinite group G. The
index set is partially ordered through i ≤ j ⇔ Nj ⊂ Ni . If i ≤ j, then we have the
canonical epimorphism ηji : G/Nj → G/Ni . These projections satisfy properties (INV1)
and (INV2). If the family contains all open normal subgroups of G, then also (INV0) holds,
because then the family is a basis for the neighborhood filter of 1 ∈ G. We ask whether
we may identify G with lim←−G/Ni .

Lemma 24.8 Let G be a compact topological group and let Ni , i ∈ I, be a family of open
normal subgroups in G with the following properties:

(1) the subgroups Ni form a basis for the neighborhood filter of 1,
(2)

⋂
i∈I Ni = {1} .

Then the map g 7→ (gNi)i∈I is a topological isomorphism from G onto lim←−G/Ni , showing

that G is a profinite group.

Proof: The canonical epimorphisms G → G/Ni are continuous. By the universal
property of the product, the induced map ι : G →

∏
i∈I G/Ni is continuous. The image

of G lies in the subgroup lim←−G/Ni . If g 6= 1 then by condition (2) there is some Ni which

does not contain g. Thus, ιg 6= 1, showing that ι is injective. Let (giNi)i∈I be an element in
lim←−G/Ni . From condition (1) it follows that for every finite J ⊂ I there is some i ∈ I such

that Ni ⊂
⋂
i∈J Nj . Then giNi ⊂

⋂
j∈J gjNj , showing that the intersection is not empty.

Since the sets giNi are closed and G is compact, it follows that there exists g ∈
⋂
i∈I giNi .

This element satisfies ιg = (giNi)i∈I . We have proved that ι is surjective. Condition (1)
implies that the open normal subgroups of G form a basis for the neighborhood filter of
1. For groups with this property, we have shown that continuous epimorphisms are open.
Hence ι is open and ι−1 is continuous. �

Corollary 24.9 a) Every profinite group G is topologically isomorphic to lim←−G/Ni where

Ni runs through all open normal subgroups of G. That is, every profinite group is (up to
topological isomorphism) the inverse limit of its finite quotients.

b) Every closed subgroup of a profinite group G is again a profinite group.

c) If N is a closed normal subgroup of the profinite group G, then G/N is a profinite
group.

Proof: a): This follows directly from the foregoing lemma since we have shown earlier
that the intersection of all open normal subgroups of a profinite group G is {1}.
b): If H is a closed subgroup of a profinite group G, then H is compact. We take Ni ,
i ∈ I, to be all intersections of H with open normal subgroups of G . Since the open normal
subgroups of G form a basis of the neighborhood filter of 1 and their intersection is {1},
the same is true for the open normal subgroups Ni in H. Now our assertion follows from
the foregoing lemma, applied to H in the place of G.
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c): N is the intersection of open normal subgroups Ni of G that contain N . The family
Ni/N of open normal subgroups of G/N satisfies the conditions of the foregoing lemma
and again, the assertion follows from that lemma, applied to G/N in the place of G. �

Every compact, hausdorff, totally disconnected topological group is a profinite group
(and vice versa, as we have already shown). This is proved as follows. One shows that in a
compact hausdorff group G, the connected component of g ∈ G is equal to the intersection
of all closed open neighborhoods of g (cf. [RIBES], Lemma 2.3). If G is also totally
disconnected, then this intersection is {g}. Further, one shows that every closed open
neighborhood of 1 contains an open normal subgroup (cf. [RIBES], Lemma 2.4). Hence,
the open normal subgroups of G satisfy the conditions 1) and 2) of Lemma 24.8 and we
obtain that G is indeed a profinite group.

For a collection of exercises on topological and profinite groups, see [FR–JA], at the
end of Chapter 1.

24.4 Infinite Galois theory

We have already seen at the end of Section 24.2 that every Galois group GalL|K is isomor-
phic to the inverse limit of the finite Galois groups GalLi|K where Li|K runs through all
finite normal subextensions of L|K. (In fact, Lemma 24.8 shows that it is not necessary to
take all of them; it suffices to take a family of subextensions of L|K such that every finite
normal subextension of L|K is contained in some member of that family.) Taking all finite
Galois groups to be endowed with the discrete topology, this representation of GalL|K as
an inverse limit of finite Galois groups turns GalL|K into a profinite group, with projec-
tions πi = resLi

. The induced topology on GalL|K is called the Krull topology. Hence,
Galois groups with the Krull topology have all properties that we have already stated for
profinite groups and for compact topological groups (with {1} a closed subgroup). Con-
versely, every profinite group is the Galois group of some Galois extension (cf. [FR–JA],
Corollary 1.11).

A basis of the neighborhood filter of 1 is given by the subgroups GalL|Li = res−1
Li

(1)
of GalL|K, where Li|K runs through all finite normal subextensions of L|K. (It follows
from Theorem 24.10 below that these subgroups are precisely all open normal subgroups
of GalL|K.) If L|K is finite, then GalL|K is a finite group and the Krull topology is
discrete.

If F |K is a finite subextension of L|K, then there exists i ∈ I such that F |K is a
subextension of the finite normal subextension Li|K. In this case, GalL|F is an open and
closed subgroup of GalL|K since it coincides with the finite intersection of the open and
closed sets res−1

Li
(gi) where the gi ∈ GalLi|K run through all automorphisms of Li|K which

fix every element of F . If F |K is an arbitrary subextension of L|K, then it is the union
of finite subextensions Fj|K of L|K. Consequently, GalL|F =

⋂
j GalL|Fj is a closed

subgroup of GalL|K.
Recall that the closure of a set S is the intersection of all closed sets containing S.

Consequently, an element σ belongs to the closure of S if and only if for every open set U
containing σ, the intersection S ∩U is nonempty. For a profinite group G and S ⊂ G, this
is the case if and only if for every open normal subgroup H of G, the intersection S ∩ σH
is nonempty (indeed, since the open subgroups H of G form a basis of the neighborhood
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filter of 1, the sets σH form a basis of the neighborhood filter of σ). If G = GalL|K,
then σ lies in the closure of S if and only if S ∩ σGalL|Li 6= ∅ for every finite normal
subextension Li|K of L|K. But S ∩ σGalL|Li 6= ∅ just means that resLi

(σ) ∈ resLi
(S).

We have thus proved: The closure of a set S ⊂ GalL|K consists of all σ ∈ GalL|K such
that resLi

(σ) ∈ resLi
(S) for every finite normal subextension Li|K of L|K.

For every subgroup H of GalL|K, we let Fix (L,H) denote the fixed field of H in L,
consisting of all elements of L which are fixed by all automorphisms in H. This fixed field
is a subfield of L containing K.

Now we are ready to state the Galois correspondence for (not necessarily finite)
Galois extensions. Note that the Krull topology on a finite profinite group is discrete,
which yields that every subgroup is closed. So for finite Galois extensions, the following
indeed gives the usual Galois correspondence.

Theorem 24.10 Let L|K be a Galois extension. The map F 7→ GalL|F is a bijection
from the set of all subextensions F |K of L|K onto the set of all closed subgroups of GalL|K.
Its inverse is the map H 7→ Fix (L,H). For this correspondence, the following rules hold
(where E,F are subfields of L containing K, the groups G,H are closed subgroups of
GalL|K, and σ ∈ GalL|K):

(Gal1) E ⊂ F ⇔ GalL|E ⊃ GalL|F
(Gal1′) G ⊂ H ⇔ Fix (L,G) ⊃ Fix (L,H)

(Gal2) GalL|(E .F ) = GalL|E ∩GalL|F
(Gal3) GalL|(E ∩ F ) = GalL|E .GalL|F
(Gal2′) Fix (L,G ∩H) = Fix (L,G) .Fix (L,H)

(Gal3′) Fix (L,G .H) = Fix (L,G) ∩ Fix (L,H)

(Gal4) GalL|E is a group complement of GalL|F in GalL|K if and only if E is a
field complement of F in L over K.

(Gal5) GalL|σE = σ(GalL|E)σ−1

(Gal5′) Fix (L, σGσ−1) = σFix (L,G)

(Gal6) E|K is a Galois extension if and only if GalL|E is normal in GalL|K.

Proof: For the proof of these assertions in the case of a finite Galois extension L|K,
see [LANG3], Chapter VIII, §1. Note that (Gal4) follows from (Gal2), (Gal3), (Gal2′),
(Gal3′), and that (Gal6) follows from (Gal5), (Gal5′).

Let E|K be a subextension of L|K and G = GalL|E. Then E ⊂ Fix (L,G). Let
a ∈ Fix (L,G). Since L|E is again a Galois extension, a is contained in a finite Galois
subextension M |E of L|E. Since every σ ∈ GalM |E can be extended to an automorphism
of L|E, we find that σa = a for every such σ. By finite Galois Theory, a ∈ E, showing
that E = Fix (L,G).

Conversely, let G be an arbitrary subgroup of GalL|K and E = Fix (L,G). Then
G ⊂ GalL|E. We show that GalL|E is equal to the closure of G; then G = GalL|E if
G is closed. Let σ ∈ GalL|E; we have to show that resLi

(σ) ∈ resLi
(G) =: Gi for every

finite normal subextension Li|K of L|K. Since E is the fixed field of G in L, we find that
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E is also the fixed field of Gi in E.Li . By finite Galois Theory, Gi = GalE.Li|E. Hence,
resLi

(σ) ∈ Gi .
The proof of all remaining assertions is left to the reader. �

Now let L|K and L′|K ′ be two Galois extensions such that L ⊂ L′ and K ⊂ K ′.
Then the restriction map resL : GalL′|K ′ → GalL|K is a group homomorphism. It is
continuous (and hence open); indeed, if Li|K is a finite normal subextension of L|K, then
also Li.K

′|K ′ is a finite normal extension, and resL(GalL′|Li.K ′) ⊂ GalL|Li . Since K ′ is
the fixed field of GalL′|K ′ in L′, we find that L ∩K ′ is the fixed field of resL(GalL′|K ′)
in L. Further, resL(GalL′|K ′) is compact and thus closed in GalL|K. From the foregoing
theorem, we may now infer that resL(GalL′|K ′) = GalL |L ∩ K ′. We have proved that
the restriction is in fact a continuous epimorphism

resL : GalL′|K ′ −→ GalL |L ∩K ′ .

Its kernel is GalL′|L.K ′ . Note that for every subextension E ′|K ′ of L′|K ′, the fixed field
of resL(GalL′|E ′) in L is E ′ ∩ L. Conversely, if E is this fixed field, then E ′ = E.K ′ .

Now we apply our results to two special cases. The first is the case of K = K ′ and
L ⊂ L′, that is, the restriction to a subextension. The second is the case of L′ = L.K ′

where the kernel is trivial and the above epimorphism is an isomorphism. We obtain:

Theorem 24.11 Let L|K be a Galois extension. Then:

(Gal7) If E|K is a Galois subextension of L|K, then the restriction of the automor-
phisms of L|K to E is a continuous open epimorphism with kernel GalL|E,
giving rise to a topological isomorphism GalE|K ∼= GalL|K /GalL|E . If
F |K is a subextension of L|K, then the fixed field of resE(GalL|F ) in E is
E ∩ F .

(Gal8) If K ′|K is an arbitrary field extension, then L.K ′|K ′ is a Galois extension,
and the restriction of the automorphisms of L.K ′|K ′ to L is a continuous
open epimorphism giving rise to a topological isomorphism GalL.K ′|K ′ ∼=
GalL |L∩K ′ . If E|K and E ′|K ′ are subextensions of L|K and L.K ′|K ′ re-
spectively and if GalL|E is the image of GalL.K ′|E ′ under this isomorphism,
then E = E ′ ∩K and E ′ = E.K ′ .

(Gal9) If K ′|K is a Galois extension, then L.K ′|K is a Galois extension and the
restrictions of the automorphisms of L.K ′ |L ∩K ′ to L and K ′ give a topo-
logical isomorphism GalL.K ′ |L ∩ K ′ ∼= GalL |L ∩ K ′ × GalK ′ |L ∩ K ′ ,
where the latter is endowed with the product topology. Further,

GalL.K ′|K ∼= {(σ, τ) ∈ GalL|K ×GalK ′|K | resL∩K′(σ) = resL∩K′(τ)}.

The proof of (Gal9) uses (Gal7) and the following fact whose proof we leave to the reader:
If N1 , N2 are normal subgroups of G, then

G/(N1 ∩N2) ∼= G/N1 × G/N2 . (24.2)

From (Gal7), where we replace K by L∩K ′, we obtain epimorphisms from GalL.K ′|L∩K ′
onto GalL|L∩K ′ and GalK ′|L∩K ′ with kernels N1 := GalL.K ′|K ′ and N2 := GalL.K ′|L
respectively. But N1 ∩N2 = {1}, which yields (Gal9).
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24.5 Linearly disjoint and algebraically disjoint ex-

tensions

Let L|K and F |K be subextensions of some extension Ω of the field K. Unless stated
otherwise, we always assume all fields to be contained in such a universal ex-
tension field Ω. The elements x1, . . . , xn ∈ L are said to be K-linearly independent
if c1x1 + . . . + cnxn = 0 with c1, . . . , cn ∈ K implies that ci = 0 for all i. In other
words, x1, . . . , xn are K-linearly dependent if there exists a non-trivial K-linear combina-
tion

∑
cixi which equates to zero. If xi 6= 0, then cixi = 0 implies ci = 0, hence the xi are

K-linearly independent if and only if they are K-independent (where L is viewed as a K-
module). We say that L|K is linearly disjoint from F |K (in Ω) if for every n ∈ N and
every choice of K-linearly independent elements x1, . . . , xn ∈ L, these elements will also be
F -linearly independent. We shall show that this property is symmetrical, that is, it implies
that for every n ∈ N and every choice of K-linearly independent elements y1, . . . , yn ∈ F ,
these elements will also be L-linearly independent. Hence, assume that L|K is linearly
disjoint from F |K and suppose that y1, . . . , yn ∈ F are K-linearly independent elements
which satisfy a linear dependence relation

x1y1 + . . .+ xnyn = 0

where xi ∈ L. Then our definition implies that the xi must be K-linearly dependent.
Without loss of generality, we may assume that there is m < n such that x1, . . . , xm are K-
linearly independent and that there are cij ∈ K such that xi =

∑m
j=1 cijxj for m < i ≤ n.

Then we may rewrite the dependence relation as follows:

m∑
j=1

xjyj +
n∑

i=m+1

(
m∑
j=1

cijxj

)
yi = 0 .

Reorganizing the terms, we find

m∑
j=1

(
yj +

n∑
i=m+1

cijyi

)
xj = 0 .

In this sum, the coefficient of every xj is nonzero since the elements yi were assumed to
be K-linearly independent. Hence, the elements x1, . . . , xm are not F -linearly indepen-
dent. On the other hand, x1, . . . , xm were assumed to be K-linearly independent, which
contradicts our assumption that L|K be linearly disjoint from F |K.

In view of the symmetry that we have just proved, we also say that L and F are K-
linearly disjoint if L|K is linearly disjoint from F |K. Note that if L and F are linearly
disjoint over K, then also for arbitrary subextensions L′|K of L|K and F ′|K of F |K, the
fields L′ and F ′ are K-linearly disjoint.

Assume that B is a K-basis of L. If L and F are K-linearly disjoint, then the elements
of B remain F -linearly independent, and consequently, B is also an F -basis of L.F . On
the other hand, if the elements of B remain F -linearly independent, then also the basis of
every finite K-subvector space of L will remain F -linearly independent, which implies that
L|K is linearly disjoint from F |K. Consequently,

L|K is linearly disjoint from F |K if and only if every finitely generated subextension of
L|K is linearly disjoint from F |K.
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An algebraic extension L|K is linearly disjoint from F |K if and only if [L′ : K] =
[L′.F : F ] for every finite subextension L′|K.

A finite extension L|K is linearly disjoint from F |K if and only if [L : K] = [L.F : F ].

The proof of the following transitivity property is left to the reader; it can also be found
in [LANG3], Chapter X, §5.

Lemma 24.12 Let L|K and F ⊃ E ⊃ K be field extensions, all contained in the common
extension field Ω. Then L|K is linearly disjoint from F |K if and only if L|K is linearly
disjoint from E|K and L.E|E is linearly disjoint from F |E.

Lemma 24.13 Let F |K be an arbitrary extension with K relatively algebraically closed in
F . Then F |K is linearly disjoint from every simple algebraic and every separable algebraic
extension of K. Moreover, if L|K is separable algebraic, then L is relatively algebraically
closed in L.F .

Proof: Let K(b)|K be algebraic. Then b is also algebraic over F . All conjugates of
b (over K and hence also over F ) are algebraic over K. The same is thus true for the
coefficients of the minimal polynomial f ∈ F [X] of b over F since they are symmetric
functions in the conjugates of b over F . Since K is assumed to be relatively algebraically
closed in F , it follows that f ∈ K[X]. Hence, f is also the minimal polynomial of b over
K. Thus, [F (b) : F ] = [K(b) : K], showing that F |K is linearly disjoint from K(b)|K.

Now let L|K be a separable algebraic extension. Then every finite subextension of
L|K is simple and thus linearly disjoint from F |K. This proves that L|K itself is linearly
disjoint from F |K. Let b ∈ L.F be algebraic over L. Since L|K is separable algebraic,
so is L.F |F . Hence, b is separable algebraic over F . But we have already shown that the
minimal polynomial of b over F coincides with that over K. This shows that b is separable
algebraic over K. Consequently, L(b)|K is a separable extension. From what we have just
proved, we thus know that L(b)|K is linearly disjoint from F |K. By Lemma 24.12, L(b)|L
is linearly disjoint from L.F |L. In particular, b ∈ L.F implies b ∈ L. This proves that L is
relatively algebraically closed in L.F . �

Now assume that L|K is a Galois extension and that it is not linearly disjoint from F |K.
Since every finite Galois extension is simple, it follows that there is some b ∈ L \K such
that the minimal polynomial f of b over K does not remain irreducible over F . Then the
minimal polynomial h of b over F is a factor of f of smaller degree than f and consequently,
not all of its coefficients will lie in K. On the other hand, these coefficients are elementary
symmetric functions in the roots of h, and these roots are all in L since L|K was assumed
to be normal. Consequently, the coefficients of h lie in L∩F , showing that this is a proper
extension of K. Conversely, if L ∩ F is a proper extension of K, then L and F can not be
K-linearly disjoint. We have proved:

Lemma 24.14 Let L|K a Galois and F |K an arbitrary field extension. Then L and F are
K-linearly disjoint if and only if L∩F = K. More precisely, L and F are (L∩F )-linearly
disjoint.

For a related criterion, see Lemma 24.34 below. From this Lemma together with (Gal8),
we obtain:
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Corollary 24.15 Let L|K be a Galois extension which is linearly disjoint from the arbi-
trary field extension K ′|K. Then L.K ′|K ′ is a Galois extension, and the restriction of the
automorphisms of L.K ′|K ′ to L is a topological isomorphism GalL.K ′|K ′ ∼= GalL|K .

Let L|K be any field extension. We say that t1, . . . , tn ∈ L are K-algebraically
independent or algebraically independent over K if there is no non-trivial polynomial
f(X1, . . . , Xn) with coefficients in K such that f(t1, . . . , tn) = 0. Infinitely many elements
ti , i ∈ I, are called K-algebraically independent if every finite subset of them is K-
algebraically independent. A single element t is called transcendental over K if it is
K-algebraically independent. The elements ti , i ∈ I, are K-algebraically independent if
and only if for every choice of elements ai , i ∈ I, in some extension field of K there is (a
uniquely determined) homomorphism from the ring K[ti | i ∈ I] onto the ring K[ai | i ∈ I]
over K which sends ti to ai for every i ∈ I.

A transcendence basis of L|K is a maximal set of elements of L which are K-
algebraically independent. The cardinality of all transcendence bases of L|K is equal; it
is called the transcendence degree of L|K and will be denoted by trdegL|K. From
every set of generators of L over K, one can select a transcendence basis T of L|K; indeed,
one may just take T to be a maximal K-algebraically independent subset, so all other
generators and thus also L will be algebraic over K(T ). Consequently,

Lemma 24.16 Every finitely generated field extension K(x1, . . . , xn) has finite transcen-
dence degree ≤ n. Every finitely generated field has finite transcendence degree over its
prime field.

If T is a transcendence basis of L|K and F |K is an arbitrary extension, then a tran-
scendence basis of L.F |F can be selected from T . In particular, if trdegL|K is finite,
then

trdegL.F |F ≤ trdegL|K .

Note that the transcendence degree is additive, that is,

trdegL|K = trdegL|K ′ + trdegK ′|K

for arbitrary extensions L|K ′ and K ′|K. The proof of these facts and the basic properties
of transcendence bases and transcendence degree can be found in [LANG3], Chapter X.

An extension field K(t1, . . . , tn) of K is called a rational function field in n variables
over K if the elements t1, . . . , tn are K-algebraically independent. An extension field F of
K is called an algebraic function field in n variables over K if it is a finite extension
of a rational function field in n variables over K, or equivalently, if it is a finitely generated
extension of K of transcendence degree n. We also speak of the algebraic function field
F |K.

We will say that L|K is algebraically disjoint from F |K or free from F |K (in their
common extension field Ω) if for every n ∈ N and every choice of K-algebraically inde-
pendent elements t1, . . . , tn ∈ L, these elements will also be F -algebraically independent.
Observe that L|K is algebraically disjoint from F |K if and only if every finitely gener-
ated subextension E|K of L|K satisfies trdegE|K = trdegE.F |F . Note that the elements
t1, . . . , tn ∈ L are K-algebraically independent if and only if the elements tν11 · . . . · tνn

n ∈ L,
ν1, . . . , νn ∈ N, are K-linearly independent. This implies:
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Lemma 24.17 If L|K is linearly disjoint from F |K, then it is algebraically disjoint from
F |K. Conversely, if ti ∈ L, i ∈ I, are F -algebraically independent, then K(ti | i ∈ I)|K
is linearly disjoint from F |K. If ti ∈ L, i ∈ I, are K-algebraically independent, then
K(ti | i ∈ I)|K is linearly disjoint from K̃|K and in particular, K is relatively algebraically
closed in K(ti | i ∈ I).

(For the proof of the last assertion, the reader may show that K-algebraically independent
elements ti are also K̃-algebraically independent.)

Like linear disjointness, also algebraic disjointness is symmetrical: Suppose that F |K is
not algebraically disjoint from L|K, i.e. there exist t1, . . . , tn ∈ F which are K-algebraically
independent but not L-algebraically independent. Since a dependence relation only re-
quires finitely many coefficients from L, there is a finitely generated subextension E|K of
L|K such that t1, . . . , tn ∈ F are E-algebraically dependent. That is, n + trdegE|K >
trdegE(t1, . . . , tn)|K. In view of E(t1, . . . , tn) = E.K(t1, . . . , tn), and because of n =
trdegK(t1, . . . , tn)|K, we find that trdegE.K(t1, . . . , tn)|K(t1, . . . , tn) < trdegE|K. Hence,
trdegE.F |F < trdegE|K. That is, L|K is not algebraically disjoint from F |K.

In view of the symmetry that we have just proved, we will also say that L and F are
K-algebraically disjoint if L|K is algebraically disjoint from F |K. Note that if L and F
are K-algebraically disjoint, then also for arbitrary subextensions L′|K of L|K and F ′|K
of F |K, the fields L′ and F ′ are K-algebraically disjoint. We leave it to the reader to prove
the following analogue to Lemma 24.12:

Lemma 24.18 Let L|K and F ⊃ E ⊃ K be field extensions, all contained in the common
extension field Ω. Then L|K is algebraically disjoint from F |K if and only if L|K is
algebraically disjoint from E|K and L.E|E is algebraically disjoint from F |E.

Every two field extensions L|K and F |K can be embedded in a common overfield in such
a way that their images are K-algebraically disjoint. Indeed, if ti, i ∈ I, is a transcendence
basis of F |K, then we choose L-algebraically independent elements t′i, i ∈ I, and define an
embedding K(ti | i ∈ I)→ L(t′i | i ∈ I) by ti 7→ t′i . Since F |K(ti | i ∈ I) is algebraic, this
embedding can be extended to an embedding of F in the algebraic closure of L(t′i | i ∈ I),
and we are done. In contrast to this, it is not always possible to embed two given field
extensions in a common overfield in such a way that their images are linearly disjoint.
For example, if they are algebraic and not linearly disjoint, then this will remain true for
every embedding. But in any case, we have shown that every two fields can be embedded
in a common extension field, that is, that the theory of fields has the amalgamation
property.

Lemma 24.19 Let L|K be an arbitrary subextension of Ω|K and let K(T )|K be generated
by a set T ⊂ Ω of elements which are K-algebraically independent. If they are also L-
algebraically independent, that is, if L and K(T ) are K-algebraically disjoint, and if K is
relatively algebraically closed in L, then K(T ) is relatively algebraically closed in L(T ).

Proof: Every element in L(T ) algebraic over K(T ) is already algebraic over K(T0)
for a suitable finite subset T0 of T . Hence, it suffices to prove the assertion in the case
of T finite. Induction on the number of elements of T shows that it suffices to prove the
assertion in the case of T consisting of just one element t. Let r(t) = cf(t)/g(t) ∈ L(t),
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with c ∈ L, f(t), g(t) ∈ L[t] monic and f prime to g. If r(t) is algebraic over K(t), then
there is an equation

hn(t)r(t)n + . . .+ h0(t) = 0 with hi(t) ∈ K[t] and h0(t) 6= 0

such that hn(t), . . . , h0(t) have no common factor ∈ K[t] \ K. Multiplying by g(t)n, we
obtain

hn(t)cnf(t)n + . . .+ h0(t)g(t)n = 0 .

Since t is transcendental over L, we can substitute for it an arbitrary root b ∈ L̃ of f to
obtain that h0(b)g(b)n = 0. Since f was assumed to be prime to g, we have g(b) 6= 0.
Hence, h0(b) = 0, which shows that every root of f is algebraic over K. Consequently,
the coefficients of the monic polynomial f , being symmetric functions in the roots, are all
algebraic over K. Since K is assumed to be relatively algebraically closed in L, it follows
that f(t) ∈ K[t]. By a similar argument, it is shown that g(t) ∈ K[t].

Further, we substitute for t a root d ∈ L̃ of f − g in the above equation. With this
choice, we have f(d) = g(d) 6= 0 (f being prime to g), and we obtain that

hn(d)cn + . . .+ h0(d) = 0 .

Since hn(t), . . . , h0(t) have no common non-trivial factor, not all hi(d) can be zero. Then
at least two of the hi(d) are nonzero. This shows c to be algebraic over K and thus to be
an element of K. Altogether, we find that r(t) ∈ K(t). �

Lemma 24.20 Suppose that L and F are K-algebraically disjoint. If for every finitely
generated subextension E|K of F |K, E is relatively algebraically closed in E.L, then L
and F are K-linearly disjoint.

Proof: It suffices to show that L|K is linearly disjoint from every finitely generated
subextension K(x1, . . . , xn)|K of F |K. Suppose that we have already shown that L and
K ′ := K(x1, . . . , xi−1) are K-linearly disjoint, for some i ≤ n. In view of Lemma 24.12, it
suffices to prove that L′ := L(x1, . . . , xi−1) and K(x1, . . . , xi) are K ′-linearly disjoint. By
hypothesis, K ′ is relatively algebraically closed in L′. If xi is algebraic over K ′ then in
view of Lemma 24.13, we are done. So assume that xi is transcendental over K ′. Then
by our assumption that L and F are K-algebraically disjoint, it follows that xi is also
transcendental over L′. In this case, we are done by virtue of Lemma 24.17. �

24.6 Supernatural numbers

The degree [L : K] of a finite field extension L|K gives information about the degrees of all
possible subextensions; these degrees are just divisors of [L : K]. Analogous information
is contained in the order of a finite group, or the finite index of a subgroup. If we would
just set [L : K] = ∞ if L|K is infinite, then we would loose this information. In the case
of infinite algebraic field extensions (and analogously, of profinite groups), we would like
to generalize the notion of degree (resp., of order and index) in a way that preserves the
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information of the finite case. To this end, we define a supernatural number to be a
formal product

n =
∏

p prime

pnp with np ∈ N ∪ {0,∞}

and define the product of two supernatural numbers m, n by

m · n =
∏

p prime

pmp+np

with the provision that n +∞ = ∞ + n = ∞ +∞ = ∞ for all n ∈ N ∪ {0}. Every
natural number n 6= 0 can be viewed as a supernatural number n in a canonical way,
taking np = vpn, where vp denotes the usual p-adic valuation. A supernatural number n
is said to be a power of p if it is of the form pν with ν ∈ N ∪ {0,∞}.

If m, n are supernatural numbers, then like for natural numbers, we will say that m
divides n, denoted by m|n, if there is a supernatural number ` such that m = `·n. Hence,
m divides n if and only if mp ≤ np for all primes p. As for natural numbers, m|n ∧ n|m
implies m = n.

Observe that every subset of N∪{0,∞} has a supremum in N∪{0,∞}. This gives us the
possibility of defining the least common multiple of an arbitrary set N of supernatural
numbers to be the supernatural number lcmN given by

lcmN =

pNp∏
p

with Np = sup{np | n ∈ N} ,

where p runs over all primes. It is clear from this definition that every n ∈ N divides
lcmN and that this does not remain true if we replace lcmN by any of its proper divisors.
Note that it is the notion of a supernatural number that enables us to define a least com-
mon multiple for every infinite set of natural numbers. Similarly, the greatest common
divisor gcdN is defined by just replacing the supremum by the minimum. Then gcdN
divides every n ∈ N , but no proper multiple of gcdN has this property. If N = {m,n},
then we write (m,n) instead of gcdN . We say that m is prime to n if (m,n) = 1.

Now let L|K be an algebraic field extension. Then we define

[L : K] := lcm {[E : K] | E|K a finite subextension of L|K} .

In the case of L|K a finite extension, this coincides with the usual degree (just because
[E : K] is a divisor of [L : K] for every subextension E|K).

If L|K is an algebraic extension, linearly disjoint from the arbitrary extension F |K,
then it follows from the definition of linear disjointness that [L.F : F ] = [L : K]. But the
converse is not true, if L|K is not finite.

Lemma 24.21 If L|K is an algebraic extension and K ′|K a subextension of L|K, then

[L : K] = [L : K ′] · [K ′ : K] .

Proof: In Section 24.1 we have shown that for every finite subextension L′i|K ′ of L|K ′
there is a finite subextension Ki|K of K ′|K and a finite subextension Li|Ki of L|Ki such
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that L′i = Li.K
′ and [Li : Ki] = [L′i : K ′]. Moreover, Ki|K may be chosen as to contain a

given arbitrary finite subextension of K ′|K. We have

[L′i : K ′] · [Ki : K] = [Li : Ki] · [Ki : K] = [Li : K] (24.3)

with Li|K a finite subextension of L|K. It follows that for every finite subextension L′i|K ′
of L|K ′ and Ki|K of K ′|K, the product [L′i : K ′][Ki : K] divides [L : K]. Consequently,
[L : K ′][K ′ : K] divides [L : K].

For the converse, let E|K be a finite subextension of L|K. We set L′i := E.K ′ and
choose Ki and Li as above. Recall that these both fields may be chosen such that Li
contains E. Hence, [E : K] divides [Li : K]. In view of (24.3), this in turn divides
[L : K ′][K ′ : K]. Hence, [L : K] divides [L : K ′][K ′ : K]. �

Now let G be a profinite group and H a closed subgroup of G. Then we define the
index of H in G to be

(G : H) := lcm {(G : HN) | N an open normal subgroup of G} .

(Note that HN is of finite index in G since already N is.) Further, we define the order
of G to be #G := (G : 1). Hence,

#G = lcm {(G : N) | N an open normal subgroup of G} .

If G is finite, then 1 is an open normal subgroup of G, and #G coincides with the usual
order. If (G : H) is finite, then H is an open subgroup of G, and there is an open normal
subgroup N ⊂ H of G, showing that (G : H) coincides with the usual index.

Lemma 24.22 Let G be a profinite group and H ⊂ H closed subgroups of G. Then

(G : H) = (G : H) · (H : H) .

Proof: In what follows, let N always run through all open normal subgroups of G. Then
the groups H ∩ N form a basis of the open normal subgroups of H. We compute: (G :
H) = lcmN(G : HN) = lcmN(G : HN)(HN : HN) = lcmN(G : HN)(HN/N : HN/N) =
lcmN(G : HN)(H/H ∩N : H(H ∩N)/H ∩N) = lcmN(G : HN)(H : H(H ∩N)). Since
the intersection of any two open normal subgroups of G is again an open normal subgroup
of G, the latter is equal to lcmN(G : HN) · lcmN(H : H(H ∩N)) = (G : H)(H : H). �

This lemma can also be deduced from Lemma 24.21, using the fact that every profinite
group is the Galois group of a Galois extension, together with the following lemma:

Lemma 24.23 Let L|K be a Galois extension. Then

[L : K] = #GalL|K .

The finite case of this assertion is proved in finite Galois Theory. The infinite case follows
from the definitions of [L : K] and #GalL|K by Galois correspondence (Theorem 24.10).

If A is an abelian torsion group, then #A is defined to be

#A := lcm {#B | B a finite subgroup of A} .
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Again, if A is finite, then this coincides with the usual order. To give an example,

#Q/Z =
∏

p prime

p∞ .

For further information and examples for supernatural numbers, see Chapter I, §4 of
[RIBES].

Exercise 24.2 Define the product over arbitrary sets of supernatural numbers. Use this to compute the
order of direct products of abelian torsion groups.

Exercise 24.3 Show that (G : H) = lcm {(G : N) | N an open subgroup of G containing H}.

24.7 Separable and inseparable extensions

A field K is called perfect if every of its algebraic extensions is separable. By virtue of
Lemma 24.3, this is the case if and only if the extension K̃|K is separable. If L|K is an
algebraic extension, then K̃ = L̃, and if L̃|K is separable, then by Lemma 24.3, also L̃|L
is separable. The latter yields that L is perfect. Hence,

Lemma 24.24 Every algebraic extension field of a perfect field is again perfect.

The characteristic exponent of a field K is defined to be equal to the characteristic
charK if this is nonzero (and hence a prime number), and to be equal to 1 otherwise.
We will denote it by charexpK. Let p ≥ 1 be the characteristic exponent of K. Then K
admits an injective endomorphism

ϕ : K → Kp = {ap | a ∈ K} ⊂ K

a 7→ ap .

(Recall that the binomial coefficients (pi) are divisible by p if and only if 1 ≤ i ≤ p − 1
or p = 1. In a field of characteristic p > 0 this just means that they vanish, showing
that (a + b)p = ap + bp, which proves the additivity of ϕ.) The endomorphism ϕ is called
the Frobenius endomorphism or just Frobenius of K. It is surjective if and only if
K = Kp. If K = Kp holds, then one shows by induction that K = Kpm

for all m ≥ 0.
Let us consider the Frobenius of the rational function field K̃(X). Its restriction to the
polynomial ring K̃[X] is an endomorphism of K̃[X]. We have (X − b)p

m
= Xpm − bp

m

for every b ∈ K̃ and every m ∈ N. We see that for every a = bp
m ∈ K, the minimal

polynomial Xpm − a of b over K admits only b as a root. That is, for every a ∈ K there
is a unique pm-th root in K̃; we shall denote it by a1/pm

or ap
−m

. We define K1/p∞ to be
the smallest algebraic extension field of K on which the Frobenius is surjective. It consists
of all elements of K̃ which are a pm-th root of some element in K, for some m ∈ N; this
collection of elements is indeed a field, as follows from the fact that the Frobenius (on K̃)
is a homomorphism. Similarly, we obtain a field if we collect all elements of K̃ which are
a pm-th root of some element in K, for fixed m; this field is denoted by K1/pm

. Note that
K1/p∞ is the union over all K1/pm

, n ∈ N, because for every element b in K1/p∞ there is
some integer m ∈ N such that bp

m ∈ K. Observe that for an extension generated over K
by the elements xi , i ∈ I, we have

K(xi | i ∈ I)1/pm

= K1/pm

(x
1/pm

i | i ∈ I) ,

K(xi | i ∈ I)p
m

= Kpm

(xp
m

i | i ∈ I) .
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Let b ∈ K̃ and f its minimal polynomial over K. We write f = Xn + cn−1X
n−1 +

. . . + c1X + c0 where the ci are elements of K. Assume that for i = 0, . . . , n − 1, the
index i is divisible by p if ci 6= 0. Then f may be written in the form f = gp where
g = Xn/p + c

1/p
n−pX

n/p−1 + . . .+ c
1/p
0 ∈ K1/p[X]. In this case, every root of g occurs p-times

as a root of f , showing that f is not separable, and b is not separable over K. Conversely,
it can be shown that if f is not separable, then it is of the form f = gp with g ∈ K1/p[X].
(In short, the proof is as follows. Since f has multiple roots, it has a root in common with
its derivative f ′ ∈ K[X]. If f ′ does not vanish identically, it then follows that both f and
f ′ have a common factor in K[X], which is consequently of smaller degree than f . But
this is a contradiction to the irreducibility of f . Consequently, f ′ ≡ 0 which can only be
the case if f = gp with g ∈ K1/p[X].) Now if K = Kp, then all coefficients of g lie in
K, which means that g ∈ K[X], contradicting the irreducibility of f . This shows that if
K = Kp, then every irreducible polynomial over K is separable. In particular, every field
of characteristic 0 is perfect. On the other hand, if K 6= Kp, then there is some a ∈ K
such that Xp − a is irreducible and not separable. We have proved:

Lemma 24.25 The field K is perfect if and only if K = Kp, that is, if and only if the
Frobenius is surjective. This in turn is equivalent to K = K1/p∞.

If L is a perfect extension field of K, then L = L1/p∞ and thus, L contains K1/p∞ . Since
K1/p∞ is perfect, it is consequently the smallest perfect extension field of K. Therefore, it
is called the perfect hull of K.

If the polynomial Xp − a is not irreducible over K, then it splits into linear factors.
(Indeed, Xp−a = (X−a1/p)p, and if (X−a1/p)n ∈ K[X] with 1 < n < p, hence an/p ∈ K,
then we choose integers r, s such that rn+ sp = 1 and obtain that a1/p = (an/p)r · as ∈ K.)
Hence, [K(a1/p) : K] is equal to p or to 1. It follows that [K1/p : K] and [K1/p∞ : K] are
powers of p. The reader may show that [K1/p∞ : K] = p∞ if K is not perfect.

Since the Frobenius is injective, it is an automorphism on every finite field; this shows
that every finite field is perfect. Recall that for every power q = pm of p, there is precisely
one finite field Fq with q elements and that for every n it admits precisely one extension of
degree n, namely the field with pmn elements. Every such extension is Galois, the Galois
group being generated by ϕm (m is the smallest integer ≥ 1 such that ϕm fixes Fq). For
the proofs, see [LANG3], VII, §5, Theorems 10, 12 and 13).

Let σ : K → F be any embedding. The reader may show that σ admits an extension
to an embedding σ̃ : K̃ → F̃ . For every subextension E|K of K1/p∞|K, there is a unique
extension to an embedding σE : E → F 1/p∞ . Indeed, since for every b ∈ K1/p∞ there is
some m ∈ N such that a := bp

m ∈ K, the extension σ1 must satisfy σ1b = (σa)1/pm
. In

particular, the only embedding of E in K̃ over K is the identity. Recall that an extension
E|K is called purely inseparable if it is algebraic and the only embedding of E in K̃
over K is the identity. If an extension is separable and purely inseparable, then it is
trivial. Further, if K ⊂ E ⊂ L, then L|K is purely inseparable if and only if L|E and
E|K are. If E|K is a purely inseparable subextension of a normal extension L|K, then
every automorphism of L|K will also fix E, hence we can identify GalL|K and GalL|E .
All subextensions of K1/p∞|K are purely inseparable. We are going to show that also the
converse is true, that is, that every purely inseparable extension E|K is a subextension of
K1/p∞|K.

Let f be an irreducible polynomial over K with coefficients ci ∈ K. Choose pm to be
the highest power of p which divides all i for which ci 6= 0. Then we can write f = gp

m
with
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g(X) =
∑

j djX
j ∈ K1/pm

[X] such that ci = dp
m

j for i = jpm. Note that g is irreducible

over K1/pm
, because every factorization g = g1g2 yields a factorization f = gp

m

1 gp
m

2 , but
f is irreducible by assumption. By our choice of m, there is some j not divisible by p
such that dj 6= 0. Consequently, g is separable over K1/pm

. Observe that m > 0 if and
only if f is not separable over K. On the other hand, we can also write f = h(Xpm

)
where h(X) =

∑n
j=1 cjpm(X) ∈ K[X]. Then h is irreducible over K since every non-trivial

factorization of h would also be a non-trivial factorization of f . If a1, . . . , an are the roots
of g in K̃, then they are all distinct because g is irreducible and separable over K1/pm

. The
Frobenius being injective, also ap

m

1 , . . . , ap
m

n are all distinct. But these are the roots of h
since h(Xpm

) = f(X) = g(X)p
m

=
∏n

i=1(X − ai)p
m

=
∏n

i=1(Xpm − ap
m

i ). This proves that
also h is separable over K. We summarize:

Lemma 24.26 Let f ∈ K[X] be irreducible over K and p be the characteristic exponent
of K. Then there is some integer m ≥ 0 and g ∈ K1/pm

[X], irreducible over K1/pm
, such

that f = gp
m

. So if a1, . . . , an are the roots of g in K̃, then they are all distinct, and

f = gp
m

=
n∏
i=1

(X − ai)p
m

=
n∏
i=1

(Xpm − ap
m

i ) = h(Xpm

)

with h ∈ K[X] irreducible and separable over K. We have deg g = deg h and deg f =
pm deg g. Further, f is separable over K if and only if m = 0.

Now let E|K be purely inseparable. Let b ∈ E and f its minimal polynomial over K.
We write f = gp

m
according to the foregoing lemma. Then g must be linear. Indeed, if

g would admit at least two roots a1, a2, they would be distinct and one of them, say a1 ,
would be equal to b. Then the assignment a1 7→ a2 would induce an embedding of K(b)
in K̃ over K which is not the identity. Since it can be extended to an embedding of E in
K̃ over K, this contradicts our assumption that E|K be purely inseparable. This proves
that g and thus also h is linear. But that means that h(X) = X − bpm

with bp
m ∈ K. We

have shown that for every b ∈ E, there is some integer m ≥ 0 such that bp
m ∈ K. That is,

E ⊂ K1/p∞ . We have proved:

Lemma 24.27 Let K be a field with characteristic exponent p. Then every purely insepa-
rable extension E|K is a subextension of K1/p∞|K. In this sense, K1/p∞|K is the maximal
purely inseparable extension of K. In particular, the compositum of two purely inseparable
extensions of K is again a purely inseparable extension of K.

If E|K is a purely inseparable extension and F |K is an arbitrary extension, then E.F |F is
again a purely inseparable extension, because it is contained in F 1/p∞ . Together with an
earlier observation, this lemma also shows that

Lemma 24.28 A given embedding of K in an arbitrary perfect field has a unique extension
to every purely inseparable extension of K.

Recall that an element b ∈ K̃ is called purely inseparable over K, if all roots in K̃
of its minimal polynomial over K are equal. The deduction of the above lemma has shown
that b is purely inseparable over K if and only if b ∈ K1/p∞ . Hence, the lemma shows that
an extension of K is purely inseparable if and only if it is generated by elements which
are purely inseparable over K. If b is purely inseparable of degree pm over K, then bp

m−1

is purely inseparable of degree p over K, and b is purely inseparable of degree pm−1 over
K(bp

m−1
). By induction, we obtain
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Corollary 24.29 Every finite purely inseparable extension is a tower of purely inseparable
extensions of degree p.

The maximal purely inseparable extension of an algebraic extension L|K will be denoted
by (L|K)ins. By what we have shown, K1/p∞ = (K̃|K)ins and (L|K)ins = L ∩K1/p∞ .

Let L|K be an algebraic extension, b ∈ K̃ with minimal polynomial f over K, and
let g be as in Lemma 24.26. If f is not separable over K, then the degree of g is smaller
than that of f , which shows that K(b)|K is not linearly disjoint from K1/p∞|K. Therefore,
if an algebraic extension L|K is linearly disjoint from K1/p∞|K, then each of its simple
subextensions is separable and hence, L|K is itself separable. To show the converse, assume
that K(b)|K is separable, that is, K(b) has [K(b) : K] distinct embeddings in K̃ over K.

They extend to [K(b) : K] distinct embeddings of K(b).K1/p∞ = K1/p∞(b) in K̃ = K̃1/p∞

over K. But these embeddings are in fact embeddings over K1/p∞ since they must be the
identity on K1/p∞ . This proves that [K1/p∞(b) : K1/p∞ ] = [K(b) : K], showing that K(b)
and K1/p∞ are K-linearly disjoint. In view of Lemma 24.27, we conclude:

Lemma 24.30 Let L|K be an algebraic extension. Then L|K is separable if and only if
it is linearly disjoint from K1/p∞|K, and this holds if and only if L|K is linearly disjoint
from every purely inseparable extension of K.

The degree [K1/p : K] of the purely inseparable extension K1/p|K is called the p-degree
of K. It is equal to 1 if and only if K is perfect. Since ϕ is an endomorphism of K1/p

with image K and an endomorphism of K with image Kp, the p-degree of K is equal to
[K : Kp]. A basis of K|Kp is called a p-basis of K. Note that ϕn sends a p-basis of K1/pn

onto a p-basis of K, and it follows that the p-degree of K1/pn
is equal to that of K.

Remark 24.31 Among model theoretic algebraists, the p-degree is also called Ershov-invariant. In
the literature, it is usual that n is called the p-degree if [K : Kp] = pn. This is the additive form of the
p-degree. But for our purposes, the multiplicative notation has turned out to be more useful.

Lemma 24.32 If L|K is a separable algebraic extension, then L1/p = L.K1/p, and the
p-degree of L is equal to that of K. If L|K is an arbitrary finite extension, then again, the
p-degree of L is equal to that of K.

Proof: Let B be a basis of L over K. We know already that L1/p = K1/p(b1/p | b ∈ B).
Assume that L|K is separable. Then for every b ∈ B, we have K(b) = K(bp) since

otherwise, the separable extension K(b)|K would contain a non-trivial purely inseparable
extension K(b)|K(bp), which is impossible. It follows that L = K(B) = K(bp | b ∈ B),
which gives L1/p = K1/p(B) = L.K1/p. Since L and K1/p are K-linearly disjoint, L|K
being separable, it now follows that [L1/p : L] = [K1/p : K].

To prove our last assertion, assume now that L|K is an arbitrary finite extension. We
have that [L1/p : K1/p][K1/p : K] = [L1/p : K] = [L1/p : L][L : K]. The Frobenius
endomorphism sends L1/p onto L and K1/p onto K. Thus, [L1/p : K1/p] = [L : K] <∞. If
[K1/p : K] is finite, then this yields that [K1/p : K] = [L1/p : L]. If [K1/p : K] is infinite,
then so is [L1/p : L], so both are equal to p∞. �

Lemma 24.33 If L|K is an algebraic extension, then [L : Lp] ≤ [K : Kp].
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Proof: In view of the foregoing lemma, it suffices to prove our assertion in the case
of a purely inseparable extension L|K. Assume first that both [L : Lp] and [K : Kp]
are infinite cardinals. Then [L : Lp] is equal to [L1/p∞ : L] since L1/p∞ =

⋃∞
I=1 L

1/pi

and [L1/pi
: L1/pi−1

] = [L : Lp] for all i. The same holds for [K : Kp], and in view of
L1/p∞ = K1/p∞ , we obtain that [L : Lp] = [L1/p∞ : L] ≤ [K1/p∞ : K] = [K : Kp].

If [K : Kp] is infinite and [L : Lp] is finite, then there is nothing to prove. Now
assume that [K : Kp] is finite. Let b1, . . . , bn ∈ L1/p be L-linearly independent. We set
E := K(bp1, . . . , b

p
n) ⊂ L. Then the elements b1, . . . , bn are also E-linearly independent, and

they lie in E1/p. But they are also algebraic over K and thus, E|K is a finite extension. By
the foregoing lemma, we find that n ≤ [K : Kp]. This proves that [L : Lp] ≤ [K : Kp]. �

If K is not perfect, then it can happen that the p-degree drops under infinite inseparable
algebraic extensions, as the extension K1/p∞|K shows.

Let us now discuss the behaviour of the p-degree under transcendental extensions.
Let ti , i ∈ I, be K-algebraically independent. Then also the elements tp

m

i , i ∈ I, are

K-algebraically independent, for every m. But also the elements t
1/pm

i , i ∈ I, are K-
algebraically independent, for every m. (Indeed, a non-trivial algebraic dependence relation
of them could be raised to the pm-th power to obtain a non-trivial algebraic dependence
relation of the elements ti .)

The finite products
∏

i∈I t
νi
i with 0 ≤ νi < p form a basis of the extension

K(ti | i ∈ I) |K(tpi | i ∈ I) .

This is seen as follows. Since the elements 1, tj, t
2
j , . . . , t

p−1
j form a basis of the extension

K(tpi | i ∈ I)(tj)|K(tpi | i ∈ I) for every j ∈ I, the products
∏

i∈I t
νi
i generate the above

extension. If they would not be K(tpi | i ∈ I)-linearly disjoint, then there would be a
non-trivial K(tpi | i ∈ I)-linear combination of them which equates to zero. Multiply
by the common denominator of the coefficients. Note that in this denominator, every
appearing ti will appear to the pm-th power for some integer m > 0. This yields that the
result of the multiplication is a non-trivial K-linear combination of distinct finite products∏

i∈I t
µi

i with µi ≥ 0, which equates to zero. But this contradicts our hypothesis that the
ti be K-algebraically independent. This contradiction establishes our assertion. If I has n
elements, then [K(ti | i ∈ I) : K(tpi | i ∈ I)] = pn, and if I is infinite, then this degree is
p∞.

As we have noted already, K(ti | i ∈ I)p = Kp(tpi | i ∈ I). We find that [K(ti | i ∈
I) : K(ti | i ∈ I)p] = [K(ti | i ∈ I) : K(tpi | i ∈ I)] · [K(tpi | i ∈ I) : Kp(tpi | i ∈ I)]. Since
the elements tpi are K-algebraically independent, Lemma 24.17 shows that Kp(tpi | i ∈ I)
and K are Kp-linearly disjoint. Hence, [K(tpi | i ∈ I) : Kp(tpi | i ∈ I)] is equal to [K : Kp],
the p-degree of K. We thus find that the p-degree of a rational function field K(t1, . . . , tn)
is equal to [K : Kp] · pn, and that the p-degree of K(ti | i ∈ I) is p∞ if I is infinite. By
virtue of Lemma 24.32 it follows that the p-degree of an algebraic function field F |K in n
variables is [K : Kp] · pn.

If K is perfect, then the finite products
∏

i∈I t
νi
i , 0 ≤ νi < p, form a p-basis of the

rational function field K(ti | i ∈ I). For example, 1, t, . . . , tp−1 is a p-basis of Fp(t) if t is
transcendental over Fp. If a field L has this p-basis, then we can write

L = Lp ⊕ tLp ⊕ . . .⊕ tp−1Lp
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(as an Lp-vector space).

Let again L|K be an arbitrary algebraic extension and b ∈ L with minimal polynomial
f over K. Let m and h ∈ K[X] be as in Lemma 24.26, such that f(X) = h(Xpm

) and
that h is irreducible and separable over K. Then K(bp

m
)|K is a separable subextension

of L|K, and thus lies in (L|K)sep. On the other hand, K(b)|K(bp
m

) is purely inseparable.
Consequently, L|(L|K)sep is a purely inseparable extension. With the help of this fact, we
can deduce a lemma which is very similar to Lemma 24.14:

Lemma 24.34 Let L|K a normal and F |K an arbitrary separable-algebraic field exten-
sion. Then L and F are K-linearly disjoint if and only if L ∩ F = K. More precisely, L
and F are (L ∩ F )-linearly disjoint.

Proof: Set Ls := (L|K)s. Then Ls|K is a Galois extension. Hence by Lemma 24.14, Ls
and F are (Ls ∩ F )-linearly disjoint. Since F |K is separable, the same holds for F.Ls|Ls .
Since L|Ls is purely inseparable, it follows from Lemma 24.30 that L and F.Ls are Ls-
linearly disjoint. Hence by Lemma 24.12, L and F are (Ls ∩ F )-linearly disjoint. Finally,
observe that Ls ∩ F = L ∩ F . Indeed, since F |K is separable, also L ∩ F |K is separable,
which shows that L ∩ F is contained in Ls . �

We have already defined the separable degree [L : K]sep of L|K to be the number
of distinct embeddings of L in K̃ over K. But every embedding of (L|K)sep has a unique
extension to an embedding of L since L|(L|K)sep is purely inseparable. On the other
hand, (L|K)sep|K is separable by definition. Hence, we have that [L : K]sep = [(L|K)sep :
K]sep = [(L|K)sep : K]. Analogously, we define the inseparable degree of L|K to
be [L : K]ins := [L : (L|K)sep]. By virtue of Lemma 24.27, [L : K]ins is a power of the
characteristic exponent of K. If infinite, these degrees are to be understood as supernatural
numbers. We have that

[L : K] = [L : K]sep · [L : K]ins .

Assume E|K to be a subextension of L|K. Then E. (L|K)sep|E is separable, showing
that (L|E)sep contains E. (L|K)sep. On the other hand, L is a purely inseparable extension
of E.(L|K)sep since it is already a purely inseparable extension of (L|K)sep. This shows
that

(L|E)sep = E.(L|K)sep .

Applying this with L = K̃, we find that for every algebraic extension E|K,

Esep = E.Ksep .

Lemma 24.35 Let L|K be an algebraic extension and E|K a subextension of L|K. Then

[L : K]sep = [L : E]sep · [E : K]sep ,

[L : K]ins = [L : E]ins · [E : K]ins .

Proof: We abbreviate K ′ := (E|K)sep and E ′ := (L|E)sep. Set L′ := (L|K ′)sep. Observe
that L′ = (L|K)sep and that E ′ = E.L′. Since E|K ′ is purely inseparable, it is linearly
disjoint from L′|K ′. Hence, [L : K]sep = [L′ : K] = [L′ : K ′][K ′ : K] = [E ′ : E][K ′ : K] =
[L : E]sep[E : K]sep , and [L : K]ins = [L : L′] = [L : E ′][E ′ : L′] = [L : E ′][E : K ′] = [L :
E]ins[E : K]ins. �
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In the following, let L|K be a normal extension. Let b ∈ L and f its minimal polyno-
mial over K. By Lemma 24.26, we choose m and g ∈ K1/pm

[X] such that f = gp
m

and
that g is irreducible and separable over K1/pm

. All roots of g are roots of f . Since L|K
was assumed to be normal, all of them lie in L and consequently, all coefficients of g lie
in L ∩ K1/p∞ = (L|K)ins. This proves that b is separable over (L|K)ins. Consequently,
if L|K is a normal extension, then L|(L|K)ins is separable. Consequently, also the ex-
tension L | (L|K)sep. (L|K)ins is separable. On the other hand, L | (L|K)sep and thus also
L | (L|K)sep. (L|K)ins is purely inseparable. This shows that L | (L|K)sep. (L|K)ins must be
trivial. We have proved that

L|K normal =⇒ L | (L|K)ins separable

L | (L|K)ins separable =⇒ L = (L|K)sep. (L|K)ins .

Lemma 24.36 Let L|K be an algebraic extension. Assume that L | (L|K)ins is separable
(which is the case if L|K is normal). Then [L : (L|K)ins] = [L : K]sep and [(L|K)ins : K] =
[L : K]ins .

Proof: Since L | (L|K)ins is assumed to be separable, we have that L = (L|K)sep. (L|K)ins.
The purely inseparable extension (L|K)ins |K is linearly disjoint from the separable al-
gebraic extension (L|K)sep |K. Hence, we find that [L : K]ins = [L : (L|K)sep] =
[(L|K)sep. (L|K)ins : (L|K)sep] = [(L|K)ins : K] , and [L : K]sep = [(L|K)sep : K] =
[(L|K)sep. (L|K)ins : (L|K)ins] = [L : (L|K)ins]. �

Assume E|K to be a subextension of L|K. Then E. (L|K)ins|E is purely inseparable,
showing that (L|E)ins contains E. (L|K)ins. On the other hand, L is a separable extension
of E.(L|K)ins since it is already a separable extension of (L|K)ins. This shows that

(L|E)ins = E.(L|K)ins .

Applying this with L = K̃, we find that for every algebraic extension E|K,

E1/p∞ = E.K1/p∞ .

Lemma 24.37 Let K ′|K be an arbitrary algebraic extension and L′|K ′ a finite extension.

a) There is a finite extension L|K such that L′ = L.K ′. If L′|K ′ is separable, then also
L|K can be chosen to be separable, and if in addition K ′|K is purely inseparable, then
[L : K] = [L′ : K ′].

b) If L′|K ′ is purely inseparable, then there is a finite purely inseparable extension E|K
such that L′ ⊂ E.K ′ .

Proof: a): We write L′ = K ′(b1, . . . , bn). Since K ′|K is algebraic, all bi are algebraic over
K and thus, L := K(b1, . . . , bn) is a finite extension which satisfies L′ = L.K ′ . Now assume
that L′|K ′ is separable. Let Ks := (K ′|K)sep and Ls := (L′|Ks)

sep. Then (L′|Ks)
ins = K ′

because L′|K ′ is separable. For the same reason, we know that L′ = Ls.(L
′|Ks)

ins = Ls.K
′ .

Now we replace L′ by Ls and K ′ by Ks in the above argument. Then every bi is separable
algebraic over Ks and hence also over K. Consequently, L will be a finite separable
extension of K which satisfies L.K ′ = L.Ks.K

′ = Ls.K
′ = L′. If in addition K ′|K is
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purely inseparable, then by Lemma 24.30, L|K is linearly disjoint from K ′|K and thus,
[L : K] = [L.K ′ : K ′] = [L′ : K ′].

b): Let again L′ = K ′(b1, . . . , bn). If L′|K ′ is purely inseparable, then by Lemma 24.27, L′

is contained in K ′1/p
∞

= K ′.K1/p∞ . To write b1, . . . , bn as elements of the latter product,
we need finitely many elements c1, . . . , cm ∈ K1/p∞ . Then E := K(c1, . . . , cm) is a finite
purely inseparable extension of K which satisfies L′ = K ′(b1, . . . , bn) ⊂ E.K ′ . �

Let L|K be a normal extension. The fixed field of GalL|K contains (L|K)ins, and we
may thus identify GalL|K with GalL|(L|K)ins. On the other hand, L|(L|K)ins is separable,
and Theorem 24.10 shows that the fixed field of GalL|(L|K)ins is (L|K)ins. It follows that
for every subextension E|K of L|K, the fixed field of GalL|E is (L|E)ins = E. (L|K)ins.
From Theorem 24.10, we thus obtain

Theorem 24.38 Let L|K be a normal extension. The map E 7→ GalL|E is a bijection
from the set of all subfields of L containing (L|K)ins onto the set of all closed subgroups
of GalL|K. Its inverse is the map G 7→ Fix (L,G). For this correspondence, the rules
(Gal1) – (Gal9) hold, for E,F subfields of L containing (L|K)ins, G,H closed subgroups
of GalL|K and σ ∈ GalL|K = GalL|(L|K)ins.

If E,F are two subfields of L and if E contains (L|K)ins, then also E.F contains
(L|K)ins, and E.F = E.(L|K)ins.F = (L|E)ins. (L|F )ins . By virtue of (Gal2′), in the
context of the foregoing theorem, we thus obtain the following version of (Gal2′):

Lemma 24.39 Let L|K be a normal extension with subextensions E|K and F |K. If E is
the fixed field of GalL|E (or equivalently, if L|E is separable), then E.F is the fixed field
of GalL|E ∩ GalL|F .

Lemma 24.30 gives rise to the following more general definition: An arbitrary extension
L|K is called separable if it is linearly disjoint from K1/p∞|K. Hence, if K is perfect,
then every extension of K is separable. If L|K is even linearly disjoint from K̃|K, then
L|K is called regular. So regularity implies separability. Note that in these definitions, we
may use a very natural amalgamation: K1/p∞ and K̃ may both be chosen as subfields of
L̃; it is left to the reader to show that the definition does actually not depend on the choice
of the amalgamation. If L|K is separable (resp. regular), then so is every subextension
of L|K. A basic example for regular extensions is given by the following lemma, which
follows directly from Lemma 24.17 and the definition of regularity:

Lemma 24.40 If the elements xi , i ∈ I, are K-algebraically independent, then the exten-
sion K(xi | i ∈ I)|K is regular.

Lemma 24.41 L|K is separable if and only if it is linearly disjoint from K1/p|K, and
this is the case if and only if Lp is linearly disjoint from K|Kp. If L|K is not separable,
then there is some finite subextension E|K of K1/p|K (which may be chosen to be linearly
disjoint from L|K) such that E admits a non-trivial purely inseparable algebraic extension
in L.E .
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Proof: If L|K is separable, then by definition it is linearly disjoint from K1/p∞|K and
thus also from K1/p|K. For the converse, assume that L|K is not linearly disjoint from
K1/p∞|K. Then there are K-linearly independent elements x1, . . . , xn ∈ L which are not
K1/p∞-linearly independent. Choosemminimal such that there are y1, . . . , yn ∈ K1/pm

with∑
i xiyi = 0. Then m ≥ 1, and xp

m−1

1 , . . . , xp
m−1

n are K-linearly independent. (Otherwise,

we would have a non-trivial relation
∑

i x
pm−1

i zi = 0 with zi ∈ K, hence
∑

i xiz
1/pm−1

i = 0,

contradicting the minimality of m.) But xp
m−1

1 , . . . , xp
m−1

n are not K1/p-linearly independent

since
∑

i x
pm−1

i yp
m−1

i = 0 with yp
m−1

i ∈ K1/p. This proves that L|K is not linearly disjoint
from K1/p|K.

The Frobenius is an isomorphism from L1/p onto L and sends the subfield L onto Lp,
the subfield K1/p onto K and the subfield K onto K1/p. This shows that L is linearly
disjoint from K1/p|K if and only if Lp is linearly disjoint from K|Kp.

Now assume that L|K is not separable, that is, not linearly disjoint from K1/p|K.
Then there exists a finite subextension E ′|K of K1/p|K which is not linearly disjoint from
L|K. Since E ′|K is a finite purely inseparable extension, there are intermediate fields
K = E0 ⊂ E1 ⊂ . . . ⊂ Er = E ′ such that every Ei+1|Ei is purely inseparable of degree p.
Let i ≥ 0 be the maximal index such that Ei and L are K-linearly disjoint. Then i < r, and
it follows that Ei+1 and L.Ei are not Ei-linearly disjoint. But this means that Ei+1 ⊂ L.Ei
because Ei+1|Ei is of degree p. Setting E := Ei , we obtain that E|K is linearly disjoint
from L|K and admits a purely inseparable extension of degree p in L.E . �

The p-degree does not drop under separable extensions:

Corollary 24.42 Let K be a field of characteristic p > 0 and L|K a separable extension.
Then [L : Lp] ≥ [K : Kp].

Proof: Since L|K is assumed to be separable, it is linearly disjoint from K1/p|K. Hence,
[L.K1/p : L] = [K1/p : K]. Since L1/p contains K1/p, we obtain that [L1/p : L] ≥ [L.K1/p :
L] = [K1/p : K]. �

By virtue of Lemma 24.12, where we set F = K1/p∞ resp. F = K̃, we obtain:

Lemma 24.43 If L|K ′ and K ′|K are separable resp. regular extensions, then L|K is sep-
arable resp. regular.

The converse is not true: If x is transcendental over K and charK = p > 0, then K(x)|K
and K(xp)|K are regular, but K(x)|K(xp) is not separable.

Let L|K be an arbitrary field extension. If it admits a transcendence basis T such that
L|K(T ) is a separable-algebraic extension, then we say that L|K is separably generated,
and T is called a separating transcendence basis. If L|K is separably generated, then
it is separable; this follows from Lemma 24.40 and Lemma 24.43. For finitely generated
extensions, the converse is also true:

Lemma 24.44 If L|K is a finitely generated separable extension, then a separating tran-
scendence basis can be selected from every given set of generators.

Proof: Let x1, . . . , xn be generators for L over K. Without loss of generality, we may as-
sume that x1, . . . , xm are K-algebraically independent, and that xm+1, . . . , xn are algebraic
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over K(x1, . . . , xm). If m = n, there is nothing to prove. Otherwise, let f(X1, . . . , Xm+1)
be a polynomial of lowest degree with coefficients in K such that f(x1, . . . , xm+1) = 0.
Then f is irreducible. Assume we could write f(X1, . . . , Xm+1) = g(X1, . . . , Xm+1)p where
g has coefficients in K1/p. Then g(x1, . . . , xm+1) = 0 which shows that the set of mono-
mials in x1, . . . , xm+1 of degree ≤ deg g is K1/p-linearly dependent. Since L|K is as-
sumed to be separable and thus, to be linearly disjoint from K1/p|K, it follows that this
set of monomials is already K-linearly dependent. But this means that there exists a
polynomial f1(X1, . . . , Xm+1) of degree ≤ deg g < deg f with coefficients in K such that
f(x1, . . . , xm+1) = 0, a contradiction to the minimality of f . Thus, we may assume with-
out loss of generality that X1 does not appear in every monomial of f to a power which
is divisible by p. In view of the irreducibility of f , this yields that f(X1, x2, . . . , xm+1)
is a separable minimal polynomial for x1 over K(x2, . . . , xm+1). Hence, K(x1, . . . , xm+1)
is separable over K(x2, . . . , xm+1) and thus also over K(x2, . . . , xn). If x2, . . . , xn do not
already form a transcendence basis, then we iterate our procedure until we have found a
separating transcendence basis among these elements. �

Lemma 24.45 Let L|K be an arbitrary extension with K relatively algebraically closed in
L. Let L and F be K-algebraically disjoint in a common extension field Ω. The relative
algebraic closure of F in L.F is always a purely inseparable (possibly trivial) extension
of F . If F |K is separable, then L|K and F |K are linearly disjoint, and F is relatively
algebraically closed in L.F .

Proof: Let T be a transcendence basis of F |K. Since K is assumed to be relatively
algebraically closed in L, Lemma 24.19 shows that K(T ) is relatively algebraically closed
in L(T ). To prove our first assertion, we may thus assume that F |K is algebraic. Ab-
breviate E = (F |K)sep. Since K is relatively algebraically closed in L, we infer from
Lemma 24.13 that L and Ksep are K-linearly disjoint. By Lemma 24.12 it follows that
L.E and Esep = Ksep are E-linearly disjoint. Since F is a purely inseparable extension
of E, also the extension L.F |L.E is purely inseparable and thus linearly disjoint from the
separable extension L.Esep|L.E . Again by Lemma 24.12, we find that Esep|E is linearly
disjoint from L.F |E. Applying the same lemma a third time, we conclude that L.F and
F.Esep = F sep are F -linearly disjoint and thus, L.F ∩ F sep = F . That is, the relative
algebraic closure of F in L.F is a purely inseparable extension of F .

To prove the second assertion, assume that F |K is separable. It suffices to show for
every finitely generated subextension E|K of F |K that L|K is linearly disjoint from E|K
and that E is relatively algebraically closed in L.E . By Lemma 24.44, E|K admits a
separating transcendence basis T ′. Since F |K is assumed to be algebraically disjoint
from L|K, we know that the elements of T ′ are also L-algebraically independent. By
Lemma 24.17, L|K is linearly disjoint from K(T ′)|K, and by Lemma 24.19, K(T ′) is
relatively algebraically closed in L(T ′). It follows from Lemma 24.13 that L(T ′)|K(T ′) is
linearly disjoint from the separable algebraic extension E|K(T ′). By Lemma 24.12, L|K
is linearly disjoint from E|K, and by Lemma 24.13, E is relatively algebraically closed in
L.E = L(T ).E . �

Lemma 24.46 Let L|K be a separable extension and F |K an arbitrary extension which is
algebraically disjoint from L|K in a common extension field Ω. Then L.F |F is a separable
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extension. If in addition, K is relatively algebraically closed in L, then F is relatively
algebraically closed in L.F .

Proof: It suffices to prove the assertions under the assumption that L|K be finitely
generated. Then by Lemma 24.44, there exists a separating transcendence basis T of L|K.
Since F |K is algebraically disjoint from L|K, we know that T is also a transcendence basis
of L.F |F . Since L|K(T ) is separable algebraic, the same holds for L.F |F (T ), proving that
L.F |F is separably generated and thus separable.

Assume in addition that K is relatively algebraically closed in L. Then by the foregoing
lemma, the relative algebraic closure of F in L.F is purely inseparable. But we have just
proved that L.F |F is separable. Hence, F is relatively algebraically closed in L.F . �

With the help of Lemma 24.43, we derive from the foregoing lemma:

Corollary 24.47 If L|K and F |K are separable and algebraically disjoint in a common
extension field Ω, then L.F |K is separable. In particular, if L|K is separable algebraic and
F |K is an arbitrary separable extension, then L.F |K is separable.

Let us have a closer look at regular extensions. A characterization of regularity reads
as follows:

Lemma 24.48 An extension L|K is regular if and only if it is separable and K is relatively
algebraically closed in L. If L|K is not regular, then there exists a finite subextension E|K
of K1/p|K (which may be chosen to be linearly disjoint from L|K) such that E is not
relatively algebraically closed in L.E .

Proof: We have already remarked that regularity implies separability. Also, L|K can
not be regular if K is not relatively algebraically closed in L. Now assume that L|K is
separable and K is relatively algebraically closed in L. By Lemma 24.46, L.Ksep|Ksep is
separable. It is thus linearly disjoint from the purely inseparable extension K̃|Ksep. On
the other hand, we know from Lemma 24.13 that L|K is linearly disjoint from Ksep|K.
Hence by Lemma 24.12, L|K is linearly disjoint from K̃|K.

Now assume that L|K is not regular. If K is not relatively algebraically closed in L,
then we are done. Otherwise, L|K is not separable (by what we have just proved), and
our assertion follows from Lemma 24.41. �

Lemma 24.49 Let F |K be a regular extension and L|K an arbitrary extension which is
algebraically disjoint from F |K in a common extension field Ω. Then L|K is linearly
disjoint from F |K, and F.L|L is regular.

Proof: By definition, F |K is linearly disjoint from K̃|K. Hence by Lemma 24.12,
F.K ′|K ′ is linearly disjoint from K̃ ′|K ′ for every algebraic extension K ′|K. That is,
F.K ′|K ′ is regular. We take K ′ to be the relative algebraic closure of K in L. Since
F.K ′|K ′ is separable by the foregoing lemma and since K ′ is relatively algebraically closed
in L, we can infer from Lemma 24.46 that F.K ′|K ′ is linearly disjoint from L|K ′. Since
also K ′|K is linearly disjoint from F |K, we can deduce from Lemma 24.12 that L|K is
linearly disjoint from F |K.
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The whole argument works equally well if we replace L by L̃. Indeed, if L|K is alge-
braically disjoint from F |K, then so is L̃|K since every transcendence basis of L|K is a
transcendence basis of L̃|K. We obtain that F |K is linearly disjoint from L̃|K. By virtue
of Lemma 24.12, this shows that F.L|L is linearly disjoint from L̃|L, that is, F.L|L is
regular. �

With the help of Lemma 24.43, we derive from the foregoing lemma:

Corollary 24.50 If L|K and F |K are regular and algebraically disjoint in a common
extension field Ω, then L.F |K is regular.

From the above lemma, we can also deduce the following analogue to Lemma 24.19:

Corollary 24.51 Let F |K be a regular extension and T a set of elements which are F -
algebraically independent (in some field extension of F ). Then F (T )|K(T ) is regular.

For the conclusion of this section, let note that there exist inseparable extensions L|K
where K is relatively algebraically closed in L:

Example 24.52 Let t, x, y be algebraically independent over Fp and set L := Fp(t, x, y).
Define

s := xp + typ and K := Fp(t, s) .

Then K is relatively algebraically closed in L. To show this, let b ∈ L be algebraic over
K. Note that x is transcendental over K. Indeed, otherwise x and thus also y would be
algebraic over K, so that trdegL|Fp = trdegK|Fp ≤ 2 in contradiction to our assumption
that t, x, y be algebraically independent over Fp . The element bp is algebraic over K and
lies in Lp = Fp(tp, xp, yp) and thus also in K(x) = Fp(t, x, yp). Since x is transcendental
over K, it follows by Lemma 24.17 that bp ∈ K. Consequently, b ∈ K1/p. Since Fp is
perfect, we have that K1/p = Fp(t1/p, s1/p). Write

b = r0 + r1s
1
p + . . .+ rp−1s

p−1
p with ri ∈ Fp(t1/p, s) = K(t1/p) .

By the definition of s,

b = r0 + r1x+ . . .+ rp−1x
p−1 + . . .+ t1/pr1y + . . .+ t(p−1)/prp−1y

p−1

(in the middle, we have omitted the summands in which both x and y appear). Since
x, y are algebraically independent over Fp, the degree of inseparability of K is p2, and
the elements xiyj, 0 ≤ i < p, 0 ≤ j < p, form a basis of Fp(x, y)|Fp(xp, yp). Since t
and t1/p are transcendental over Fp(xp, yp), we know that Fp(x, y)|Fp(xp, yp) is linearly
disjoint from Fp(t, xp, yp)|Fp(xp, yp) and from Fp(t1/p, xp, yp)|Fp(xp, yp). This shows that
the elements xiyj, 0 ≤ i < p, 0 ≤ j < p, form a basis of L|Fp(t, xp, yp) and are still
Fp(t1/p, xp, yp)-linearly independent. Hence, b can also be written as a linear combination
of these elements with coefficients in Fp(t, xp, yp), and this must coincide with the above
Fp(t1/p, xp, yp)-linear combination which represents b. That is, all coefficients ri and ti/pri,
1 ≤ i < p, are in Fp(t, xp, yp). This is impossible unless they are zero. It follows that
b = r0 ∈ K(t1/p). Assume that b /∈ K. Then [K(b) : K] = p and thus, K(b) = K(t1/p)
since also [K(t1/p) : K] = p. But then t1/p ∈ K(b) ⊂ L, a contradiction. This proves that
K is relatively algebraically closed in L.
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On the other hand, t1/p = y−1(s1/p − x) ∈ L(s1/p). Hence, L.K1/p = L(t1/p, s1/p) =
L(s1/p) and

[L.K1/p : L] = [L(s1/p) : L] ≤ p < p2 = [K1/p : K] .

That is, L|K is not linearly disjoint from K1/p|K and thus not separable. Although being
finitely generated, L|K is consequently not separably generated; in particular, it is not a
rational function field. At the same time, we have seen that K(s1/p) admits a non-trivial
purely inseparable algebraic extension in L(s1/p) (namely, K1/p). On the other hand,
K(s1/p) and L are K-linearly disjoint because s1/p /∈ L. In particular,

[L.K1/p : L] = [L(s1/p) : L] = p .

Let us also observe that in the last statements, s can be replaced by any other element
a of K which does not lie in Kp. Indeed, we know that a1/p /∈ L since K is relatively
algebraically closed in L. Hence, K(s1/p) and L are K-linearly and [L(a1/p) : L] = p =
[L.K1/p : L]. This shows that L(a1/p) = L.K1/p and that K(a1/p) admits the non-trivial
purely inseparable algebraic extension K1/p in L(a1/p).

Let us prove even more: if K1|K is any proper inseparable algebraic extension, then
t1/p ∈ L.K1 . Take such an extension K1|K. Then there is some separable-algebraic
subextension K2|K and an element a ∈ K1\K2 such that ap ∈ K2 . Since K2|K is separable
and K is relatively algebraically closed in L, we see that K2 is relatively algebraically closed
in L2 := L.K2 . Hence, a /∈ L2 and therefore, [L2(a) : L2] = p. On the other hand, K

1/p
2 =

K1/p.K2 and thus, L2.K
1/p
2 = L2.K

1/p = L.K1/p.K2 . Consequently, [L.K1/p : L] = p

implies that [L2.K
1/p
2 : L2] = [L.K1/p.K2 : L.K2] ≤ p. Since a ∈ K

1/p
2 ⊂ L2.K

1/p
2 and

[L2(a) : L2] = p, it follows that L2.K
1/p
2 = L2(a). We obtain:

t1/p ∈ K1/p ⊆ K
1/p
2 ⊆ L2.K

1/p
2 = L2(a) ⊆ L.K1 .

Finally, let us observe that the relative algebraic closure F of K in Fp((t)) since oth-
erwise t1/p ∈ L.F , which contradicts the fact that L.F ⊆ Fp((t)). From Lemma 24.32 it
follows that the degree of inseparability of F is p2 like that of K. ♦

Exercise 24.4 Let L|K be separable. Given K-linearly independent elements x1, . . . , xn ∈ L, prove that

also xpµ

1 , . . . , xpµ

n are Kpν

-linearly independent, for every all integers µ, ν.

Exercise 24.5 Show that if k is relatively separable-algebraically closed in K, then k1/p∞ is relatively
algebraically closed in K1/p∞ . (Hint: Otherwise, K1/p∞ |k would admit a proper separable algebraic
subextension. But this is linearly disjoint from K|k and thus also from K1/p∞ |k, contradiction.) Is the
converse also true?

24.8 (Pro-) p-groups and p′-groups

Let p be a prime. A (not necessarily finite) torsion group in which the orders of all
elements are a power of p is called a p-group. For example, an abelian torsion group A is
a p-group if and only if #A divides p∞. A torsion group will be called a p′-group (read:
“p-prime-group”) if the orders of all elements are prime to p. A profinite group is called a
pro-p-group if it is the inverse limit of an inverse system of p-groups (or equivalently, if
all of its finite quotients are p-groups), and it is called a pro-p′-group if it is the inverse
limit of an inverse system of p′-groups. A finite pro-p-group is a p-group (and similarly
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for p′). The property of being a pro-p-group (resp. a pro-p′-group) is inherited by closed
subgroups and quotients by closed subgroups. A field extension is called a p-extension if
it is Galois and its Galois group is a pro-p-group, and it is called a p′-extension if it is
Galois and its Galois group is a pro-p′-group. A field extension is a p-extension if and only
if each of its finite subextensions is a p-extension (and similarly for p′).

Let us now collect some statements about p-groups.

Lemma 24.53 If G is a finite p-group and H is a proper subgroup of G, then there exists
a subgroup G1 of G such that H CG1 and (G1 : H) = p.

Proof: Note that G 6= {1} by the assumption on H. We claim that the center C(G) =
{g ∈ G | ∀h ∈ G : hg = gh} is non-trivial. Assume the contrary. Then the centralizer
CG(h) = {g ∈ G | hg = gh} would be a proper subgroup of G for every element h ∈ G\{1}.
This would mean that 1 is the only element of G whose orbit under conjugation has a length
which is not divisible by p; but this is impossible in a group whose order is a power of p
(because the order of a finite group G is the sum of the lengths of the orbits in G). This
contradiction proves our claim.

Assume that C(G) ⊂ H. Then by induction on the order of G, the assertion of our
lemma follows for the groups G/C(G) and H/C(G). That is, there is a subgroup G1 of G
containing C(G) such that H/C(G)CG1/C(G) and (G1/C(G) : H/C(G)) = p. It follows
that H CG1 and (G1 : H) = p.

Finally, assume that C(G) 6⊂ H. Then there exists some g ∈ C(G) \ H such that
gp ∈ H. Then G1 := 〈g〉H is the required subgroup of G since the assertions H CG1 and
(G1 : H) = p follow from the fact that g commutes with H. �

The Frattini subgroup of an arbitrary finite group G is defined to be the intersection
of all maximal proper subgroups of G and is denoted by Φ(G). A group G is called
elementary-abelian if it is of the form Z/p1Z × . . . × Z/pnZ for (not necessarily distinct)
prime numbers p1 , . . . , pn . Consequently, an elementary-abelian p-group is a finite product
of copies of Z/pZ, that is, a finite dimensional Fp-vector space.

Theorem 24.54 Let G be any finite p-group.
a) If H is a maximal proper subgroup of G, then H CG and (G : H) = p. Consequently,
G/Φ(G) is elementary-abelian.
b) For every subgroup H ⊂ G there exists a chain of subgroups H = H0 ⊂ H1 ⊂ . . . ⊂
Hn = G such that Hi−1 C Hi and (Hi : Hi−1) = p for i = 1, . . . , n. In particular, every
finite p-group is solvable.

Proof: a) Let H be a maximal proper subgroup of G. We choose G1 according to the
foregoing lemma. Then G1 = G by the maximality of H. Hence, H CG and (G : H) = p.
Now let H1 , . . . , Hn be all maximal proper subgroups of G. By what we have shown, they
are normal subgroups of G. Now we use the isomorphism (24.2), where N1 , N2 are normal
subgroups of G. By induction on the number of normal subgroups, we find

G/Φ(G) = G/(H1 ∩ . . . ∩Hn) ∼= G/H1 × . . .× G/Hn .

By what we have already shown, the latter is isomorphic to Z/pZ × . . .× Z/pZ , which is
an elementary-abelian group.
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b) The first assertion follows from the foregoing lemma by induction on (G : H). The
second assertion follows from the first by taking H = {1}. �

A profinite group is called prosolvable if it is the limit of an inverse system of finite
solvable groups. From the foregoing theorem, we obtain the following analogue assertions
for pro-p-groups.

Corollary 24.55 Let G be any pro-p-group.
a) If H is a maximal proper closed subgroup of G, then H is an open normal subgroup of
G and (G : H) = p. Consequently, G/Φ(G) is an Fp-vector space.
b) G is prosolvable. For every open subgroup H ⊂ G there exists a chain of open subgroups
H = H0 ⊂ H1 ⊂ . . . ⊂ Hn = G such that Hi−1 CHi and (Hi : Hi−1) = p for i = 1, . . . , n.

Proof: a): The closed subgroup H is contained in some proper open subgroup. Hence,
if it is a maximal proper closed subgroup of G, then it is open. It contains an open normal
subgroup N . By the foregoing theorem, the finite p-group G/N admits a normal subgroup
of index p. Its foreimage in G is a normal subgroup of index p in G, containing H. By the
maximality of H, it is equal to H.

As in the finite case, one shows that there is an epimorphism from G onto
∏

iG/Hi,
where Hi runs through all maximal proper closed subgroups, and that its kernel is Φ(G).
Since every G/Hi is isomorphic to Fp, the product is an Fp-vector space.

b): By the foregoing theorem, every finite p-group is solvable. So by definition, a pro-
p-group is prosolvable. The second assertion is shown similarly to the first assertion of
a). �

Corollary 24.56 Every finite subextension of a p-extension of a field K is a tower of
Galois extensions of degree p (which are Artin-Schreier extensions if p is the characteristic
of K). Every finite subextension of an extension of degree a power of p is a tower of
extensions of degree p.

Proof: Let L|K be a finite subextension of the p-extension L1|K. Then L1 contains the
normal hull L0 of L over K. Hence, L0|K is a finite p-extension. Hence, G = GalL0|K is
a finite p-group. We apply part b) of Theorem 24.54 to its subgroup H = GalL0|L and
set Ki = Fix (L0, Hn−i), i = 0, . . . , n. Since Hn−i C Hn−i+1 and (Hn−i+1 : Hn−i) = p, we
have that Ki|Ki−1 is a Galois extension of degree p, for every i = 1, . . . , n.

We have already noted that a Galois extension of degree p of a field of characteristic p
is an Artin-Schreier extension; see Corollary 12.29. �

A subgroup H of a profinite group G is called a p-Sylow group of G if it is a closed
pro-p-subgroup of G such that p does not divide (G : H). If H is a p-Sylow group of G,
then for every open normal subgroup N of G we find that H.N/N is a p-Sylow group of
the finite group G/N . Indeed, H.N/N is a p-group, and since p does not divide (G : H),
it does not divide (G : H.N) = (G/N : H.N/N). The following is a generalization of the
Sylow Theorems of finite group theory:

Theorem 24.57 Let p be a prime and G a profinite group. Then for every pro-p-subgroup
G0 of G, there exists a p-Sylow group H of G containing G0 . All p-Sylow groups of G are
conjugate.
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Proof: Let Ni , i ∈ I, be the family of all open normal subgroups of G and recall
the discussion preceding to Lemma 24.8. For every i ∈ I, the subgroup G0.Ni/Ni of the
finite group G/Ni is a p-group. By finite group theory, the set of p-Sylow groups of G/Ni

containing G0.Ni/Ni is finite and nonempty; denote this set by Si . If i, j ∈ I such that
Nj ⊂ Ni , then by the Sylow Theorems of finite group theory, the canonical epimorphism
ηji : G/Nj → G/Ni maps a pro-p-group of G/Nj containing G0.Nj/Nj onto a pro-p-group
of G/Ni containing G0.Ni/Ni. Thus, ηji induces a map πSji from Sj into Si. The reader may
verify that the maps πSji satisfy (INV1) and (INV2). Since also I satisfies (INV0) for the
partial ordering that we have introduced preceding to Lemma 24.8, Lemma 24.7 shows that
the inverse limit over the sets Si is nonempty. Let (Hi)i∈I be an element of it. Then via the
isomorphism G ∼= lim←−G/Ni , the profinite group lim←−Hi is a subgroup of G. Since every

Hi is a p-Sylow group containing G0.Ni/Ni , it follows that H is a pro-p-group containing
G0
∼= lim←−G0.Ni/Ni . Further, p does not divide (G/Ni : Hi). But Hi = H.Ni/Ni and

consequently, (G/Ni : Hi) = (G/Ni : H.Ni/Ni) = (G : H.Ni). Hence, p does not divide
lcmi(G : H.Ni) = (G : H), showing that H is a p-Sylow group of G.

Now let H and H be p-Sylow groups of G. Let i, j ∈ I. Then H.Ni/Ni and H.Ni/Ni

are p-Sylow groups of the finite group G/Ni . Hence by the Sylow Theorems of finite group
theory, the set Ci := {gi ∈ G/Ni | gi(H.Ni/Ni)g

−1
i = H.Ni/Ni} is nonempty, and it is

finite. If Nj ⊂ Ni , then the canonical epimorphism ηji induces a map πCji from Cj into Ci.
The maps πCji satisfy (INV1) and (INV2). Hence, Lemma 24.7 shows that the inverse limit
over the sets Ci is nonempty. Let g = (gi)i∈I be an element of it. Via the isomorphism
G ∼= lim←−G/Ni , it is in fact an element of G which satisfies gHg−1 = H. �

If H is the unique p-Sylow group of the profinite group G, then H is a closed normal
subgroup of G, and G/H is a pro-p′-group.

To conclude this section, we introduce a sort of groups which behave very much like
Galois groups (and indeed, we show a connection to Galois groups in our chapter on ram-
ification theory. Given an arbitrary abelian torsion group Γ and a field k of characteristic
exponent p, then Hom(Γ, k×) denotes the set of all homomorphisms from Γ into the mul-
tiplicative group k× of k. Given χ, χ′ ∈ Hom(Γ, k×) then we define the product χ · χ′ by
χ · χ′(g) = χ(g)χ′(g) for every g ∈ Γ. In this way, Hom(Γ, k×) becomes a group, called a
p-character group of Γ. Its elements are called characters. Its identity element is the
trivial character 1 which sends every g to 1 ∈ k×. The inverse of χ sends every g to
χ(g)−1.

If k is algebraically closed, then Hom(Γ, k×) is called the full p-character group of Γ.
Since every element of Γ has finite order by assumption, χ(Γ) is contained in the group of
roots of unity of the field k, for every character χ. So we see that the group does actually
not depend upon the field k but rather upon the group of roots of unity contained in it.
So one may actually replace k by the relative algebraic closure of its prime field in k. In
particular, all algebraically closed fields of a fixed characteristic p have the same group of
roots of unity, and so the full character group for a given group Γ only depends upon the
characteristic of k.

We leave it to the reader to show the following:

Γ = Γ1 ⊕ Γ2 =⇒ Hom(Γ, k×) = Hom(Γ1, k
×)⊕ Hom(Γ2, k

×) . (24.4)
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Let q be any prime or equal to 1. Every abelian torsion group Γ admits a decomposition
Γ = Γq⊕Γq′ where Γq is the subgroup of all elements of Γ whose order is a power of q, and
Γq′ is the subgroup of all elements of Γ whose order is prime to q. Hence, Γq is an abelian
q -group, and Γq′ is an abelian q′-group. We have

Hom(Γ, k×) = Hom(Γq, k
×)⊕ Hom(Γq′ , k

×) .

We know that over a field of characteristic exponent p, the polynomial Xpn − 1 splits into
linear factors, for every n ∈ N. Hence, 1 is the only element of order a power of p in the
group of roots of unity in a field k of characteristic exponent p. This yields that 1 is the
only element of order a power of p in Hom(Γ, k×), that is, Hom(Γ, k×) is a p′-group and
Hom(Γp, k

×) = {1}. In other words,

charexp k = p =⇒ Hom(Γ, k×) = Hom(Γp′ , k
×) . (24.5)

Lemma 24.58 If Γ is finite and k is algebraically closed of characteristic exponent p, then
Hom(Γ, k×) ∼= Γp′ .

Proof: By the Main Theorem on Finitely Generated Abelian Groups, we can write Γ
as a finite direct sum of cyclic groups, all of them finite since Γ is finite. In view of (24.4)
and (24.5), it remains to show that Hom(Z/mZ, k×) ∼= Z/mZ for every natural number
which is prime to p. But for every such m, the group µk,m of m-th roots of unity contained
in the algebraically closed field k is isomorphic to Z/mZ. On the other hand, if η is a
generator of Z/mZ, then for every m-th root of unity ζ, there is precisely one character
χ ∈ Hom(Z/mZ, k×) such that χ(η) = ζ. This proves that Hom(Z/mZ, k×) ∼= µk,m ∼=
Z/mZ. �

Suppose that ∆ is a subgroup of the abelian torsion group Γ. We leave it to the reader
to prove the following facts. If Hom(Γ, k×) is the full p-character group of Γ, then every
character in Hom(∆, k×) can be extended to a character in Hom(Γ, k×). Consequently,
the restriction map Hom(Γ, k×) → Hom(∆, k×) is surjective. Its kernel is the subgroup
of all characters of Γ which are trivial on ∆; we will denote it by Hom∆(Γ, k×). Note
that Hom∆(Γ, k×) is canonically isomorphic to Hom(Γ/∆, k×). Since every element of Γ is
already contained in some finite subgroup, Hom(Γ, k×) is the inverse limit of the inverse
system of the finite groups Hom(∆i, k

×), where ∆i runs through all finite subgroups of Γ.
Hence, Hom(Γ, k×) is a profinite group. The subgroups Hom∆i

(Γ, k×) form a basis of the
neighborhood filter of the trivial character 1 of Γ.

Exercise 24.6 Let G be a profinite group. Prove:

a) If η : G→ G1 is an epimorphism of profinite groups and if H is a p-Sylow group of G, then η(H) is a
p-Sylow group of H.

b) #G =
∏

q #Hq where q runs through all primes and every Hq is a q-Sylow group of G.

What can be said about the number of p-Sylow groups of G?

Exercise 24.7 Describe a Galois correspondence of character groups.



700 CHAPTER 24. PRELIMINARIES FROM ALGEBRA

24.9 G-modules and group complements

In this section, we introduce some notions that we will need in the next section. Take any
group G. For ρ ∈ G, conjugation by ρ means the automorphism

G 3 τ 7→ τ ρ := ρ−1τρ .

Note that
τσρ = ρ−1σ−1τ σ ρ = ρ−1(τσ)ρ = (τσ)ρ for all τ, σ, ρ ∈ G . (24.6)

Further, we set τ−σ := (τ−1)σ (which indeed is the inverse of τσ). As usual, we set
Mσ = {mσ | m ∈ M} for every subset M ⊂ G. A subgroup N is normal in G if and only
if Nσ = N for all σ ∈ G. We always have Gσ = G. Hence, if H is a group complement of
the normal subgroup N in G, that is,

HN = G and H ∩N = {1} , (24.7)

then so is every conjugate Hσ for σ ∈ G. Uniqueness up to conjugation would mean that
these are the only group complements of N in G.

We shall now introduce two notions that play an important role in Section 12.6. A
right G-module is an arbitrary group N together with a map µ from G into the group
of automorphisms of N such that µ(σρ) = µ(ρ) ◦ µ(σ). For example, to every σ ∈ G we
may associate the conjugation by σ; in view of (24.6), this turns G into a right G-module.
In this setting, a subgroup N of G is normal if and only if it is a G-submodule of G.

Also in the general case of right G-modules N , it is convenient to use the above notation
and write aρ instead of µ(ρ)(a) for a ∈ N . A map φ from G into a G-module N is called
a crossed homomorphism if it satisfies

φ(σρ) = φ(σ)ρφ(ρ) for all σ, ρ ∈ G . (24.8)

As for a usual homomorphism, also the kernel of a crossed homomorphism is a subgroup
of G, but it may not be normal in G.

Let us assume that H is a group complement of the normal subgroup N in G. It follows
from (24.7) that every element σ ∈ G admits a unique representation

σ = σHσN with σH ∈ H , σN ∈ N (24.9)

Note that H is a system of representatives for the left cosets of G modulo N . Since N CG,
we have HN = NH, and H is also a system of representatives for the right cosets of G.

Now assume in addition that N is abelian. Then the scalar multiplication of the G-
module N given by conjugation reads as

σρ = ρ−1
N (ρ−1

H σρH)ρN = ρ−1
H σρH = σρH for all σ ∈ N , ρ ∈ G (24.10)

since ρN and ρ−1
H σρH are elements of N . According to (24.9) and (24.10) we write

σρ = σHσNρHρN = σHρHρ
−1
H σNρHρN = σHρHσ

ρ
NρN .

Hence, the projection σ 7→ σH onto the first factor in (24.9) is the canonical epimorphism
from G onto H with kernel N . The other projection σ 7→ σN is a crossed homomorphism
from G onto N , satisfying



24.10. THE TAYLOR EXPANSION OF A POLYNOMIAL 701

(σρ)N = σρNρN for all σ, ρ ∈ G ; (24.11)

it induces the identity on N , and its kernel is H.

Exercise 24.8 Take a crossed homomorphism φ. Show that

1) φ(1) = 1,

2) φ is injective if and only if its kernel is trivial (hint: first compute φ(b−1) in terms of φ(b), then compute
φ(b−1a) under the assumption that φ(a) = φ(b)).

24.10 The Taylor expansion of a polynomial

We frequently need a Taylor expansion of polynomials which works in fields of arbitrary
characteristic. For every j ∈ N, we have

(X + Y )j =
n∑
i=0

(
j
i

)
Xj−iY i .

This is also true in fields of characteristic p > 0 since the binomial coefficients are natural
numbers which then will be taken modulo p. For an arbitrary polynomial f(X) = cnX

n +
cn−1X

n−1 + . . .+ c0 , summation now gives

f(X + Y ) =
n∑
j=0

j∑
i=0

cj

(
j
i

)
Xj−iY i =

n∑
i=0

n∑
j=i

cj

(
j
i

)
Xj−iY i .

Setting

fi(X) :=
n∑
j=i

cj

(
j
i

)
Xj−i =

n−i∑
j=0

cj+i

(
j + i
i

)
Xj (24.12)

which we will call the i-th derivative of f , we obtain the Taylor expansion

f(X + Y ) =
n∑
i=0

fi(X)Y i . (24.13)

All i-th derivatives of f are defined also over fields of positive characteristic, but for certain
i they may vanish identically (even if i ≤ n). Over fields of characteristic 0, we have

fi(X) =
n∑
j=i

cj

(
j
i

)
Xj−i =

n∑
j=i

cj
1

i!

di

dX i
Xj =

1

i!
f (i)(X)

which gives the well-known Taylor identity

f(X + Y ) =
n∑
i=0

1

i!
f (i)(X)Y i .

The same identity can be used over fields of characteristic p > 0 for n < p; for i not prime
to p, the factor 1

i!
makes no sense. But in any case, we have

f1(X) = f (1)(X) = f ′(X) and f0(X) = f(X) .
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Further, let us compute the j-th derivative of an i-th derivative:

(fi)j(X) =

(
n∑
ν=i

cν

(
ν
i

)
Xν−i

)
j

=
n∑

ν=i+j

cν

(
ν
i

)(
ν − i
j

)
Xν−i−j

=
n∑

ν=i+j

cν
(i+ j)!

i!j!

(
ν

i+ j

)
Xν−(i+j) =

(i+ j)!

i!j!
fi+j(X)

=

(
i+ j
i

)
fi+j(X) =

(
i+ j
j

)
fi+j(X) .

Setting j = k − i, we find

(fi)k−i(X) =

(
k
i

)
fk(X) ,

whence by virtue of (24.13),

fi(X + Y ) =
n−i∑
k=0

(fi)k(X)Y k =
n∑
k=i

(fi)k−i(X)Y k−i =
n∑
k=i

(
k
i

)
fk(X)Y k−i .

Putting Y := Z −X, we derive the following versions of the Taylor expansion (24.13) and
of the last equation:

f(Z) =
n∑
k=0

fi(X)(Z −X)i (24.14)

fi(Z) =
n∑
k=i

(
k
i

)
fk(X)(Z −X)k−i . (24.15)

From equations (24.12) and (24.14) we obtain:

Lemma 24.59 Let R be a subring of an arbitrary field K, and let f ∈ R[X]. Then all
derivatives of f lie in R[X]. Further, there exist Gf (X,Z), Hf (X,Z) ∈ R[X,Z] such that

f(Z)− f(X) = (Z −X)Gf (X,Z) = f ′(X)(Z −X) + (Z −X)2Hf (X,Z) .

We also need a multidimensional version of the last assertion of the foregoing lemma.
In the following, let f be a polynomial in the n variables X1, . . . , Xn , with coefficients in
a subring R of an arbitrary field K. We write X = (X1, . . . , Xn) and f = f(X). Given a
second n-tuple Y = (Y1, . . . , Yn) of variables, we consider the polynomial f(X + Y ). It is
the sum over monomials of the form

g(X + Y ) = c(X1 + Y1)m1 · . . . · (Xn + Yn)mn .

Viewing f(X + Y ) and g(X + Y ) as polynomials in the variables X1, . . . , Xn, Y1, . . . , Yn ,
we ask for the monomials which are linear in one single Yj . Evaluating g(X+Y ) by means
of the binomial expansion, we find just one such monomial for every j, namely

cXm1
1 · . . . · mjX

mj−1
j Yj · . . . · Xmn

n .
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This is in fact equal to
∂g

∂Xj

(X) · Yj ,

where the first factor is the partial derivative of g(X) with respect to Xj . Summing up
over all monomials g in f and using the fact that the partial derivative is additive, we find
that

∂f

∂Xj

(X) · Yj

is the sum of all monomials of f(X + Y ) which are linear in Yj . Similarly, one finds that
the monomials which contain no Yj at all, just sum up to f(X). Consequently, there are

polynomials ĥjk(X, Y ) with coefficients in R such that

f(X + Y ) = f(X) +
n∑
j=1

∂f

∂Xj

(X) · Yj +
n∑
j=1

n∑
k=1

ĥjk(X, Y )YjYk .

Note that also the partial derivatives have coefficients in R. Putting Zj = Xj + Yj and

Z = (Z1, . . . , Zn) and defining h̃jk(X,Z) := ĥjk(X , Z −X) , we obtain that

f(Z)− f(X) =
n∑
j=1

∂f

∂Xj

(X) · (Zj −Xj) +
n∑
j=1

n∑
k=1

h̃jk(X,Z)(Zj −Xj)(Zk −Xk) . (24.16)


