Nonlocally Related PDE Systems:
History, Recent Developments, and Open Problems

Alexei Cheviakov

Department of Mathematics and Statistics,
University of Saskatchewan, Saskatoon, Canada

Symmetry Conference in Honour of George Bluman
May 13-16, 2014
Nonlocally Related PDE systems: Motivation

- Multiple well-known applications of symmetries/conservation laws (CL) for partial differential equations (PDE).

- Many nonlinear PDE systems have too few point/contact/higher-order (local) symmetries, local conservation laws.

- Symmetries are there! Just need to systematically find them...

- **Nonlocal symmetries**: local symmetries of nonlocally related PDE systems.

- **Nonlocal conservation laws**: essentially involve nonlocal quantities; do not arise as local CLs of the given system.
Notation

Derivatives
- Independent variables: \(x = (x^1, \ldots, x^n) = (x, y, z, \ldots) \).
- Dependent variables: \(u = (u^1(x), \ldots, u^m(x)) = (u, v, w, \ldots) \).
- Partial derivatives:
 \[
 \frac{\partial u^j}{\partial x} = u^j_x = u^1; \quad \frac{\partial^2 u^j}{\partial x \partial y} = u^j_{xy} = u^j_{12}.
 \]
- All 1st-order and \(k \)th-order partial derivatives:
 \[
 \partial u = u^1, \quad \partial^k u = u^k.
 \]

Total derivative (chain rule)
- Let \(F = F(x, u, \partial u, \ldots, \partial^q u) \).
- Total derivative:
 \[
 D_i F = \frac{\partial}{\partial x^i} + u^\mu_i \frac{\partial}{\partial u^\mu} + u^\mu_{i_1} \frac{\partial}{\partial u^\mu_{i_1}} + u^\mu_{i_1 i_2} \frac{\partial}{\partial u^\mu_{i_1 i_2}} + \cdots
 \]
- Summation assumed here and in many other places.
Example 1: the nonlinear wave equation $u_{tt} = (c^2(u)u_x)_x$, $u = u(x, t)$.

A. Cheviakov (U.Saskatchewan)
Example 1: the nonlinear wave equation \(u_{tt} = (c^2(u)u_x)_x, \ u = u(x, t) \).

- A couple of conservation laws:
 \[
 D_t(u_t) - D_x(c^2(u)u_x) = 0, \quad D_t(tu_t - u) - D_x(tc^2(u)u_x) = 0.
 \]

- Potential systems:
 \[
 \begin{align*}
 v_1^x &= u_t, & v_1^t &= c^2(u)u_x; \\
 v_2^x &= tu_t - u, & v_2^t &= tc^2(u)u_x;
 \end{align*}
 \]

- Nonlocal variables: \(v^1(x, t) \), \(v^2(x, t) \).
Example 1: the nonlinear wave equation \(u_{tt} = (c^2(u)u_x)_x, \ u = u(x, t) \).

- A couple of conservation laws:
 \[
 D_t(u_t) - D_x(c^2(u)u_x) = 0, \quad D_t(tu_t - u) - D_x(tc^2(u)u_x) = 0.
 \]

- Potential systems:
 \[
 v_1^x = u_t, \quad v_1^t = c^2(u)u_x;
 \]
 \[
 v_2^x = tu_t - u, \quad v_2^t = tc^2(u)u_x;
 \]

- Nonlocal variables: \(v^1(x, t), \ v^2(x, t) \).
Example 2: A different approach. Same PDE: \(u_{tt} = (c^2(u)u_x)_x, \ u = u(x, t) \).

1. Use the obvious conservation law: introduce the potential variable \(v \).
 \[\text{UV} : \quad v_x = u_t, \quad v_t = c^2(u)u_x. \]

2. Use the next obvious one: introduce the potential variable \(w \).
 \[\text{UVW} : \quad w_t = v, \quad w_x = u, \quad v_t = c^2(u)u_x. \]

3. Nonlocal variables: \(v(x, t), \ w(x, t) \).
Example 2: A different approach. Same PDE: $u_{tt} = \left(c^2(u)u_x\right)_x$, $u = u(x, t)$.

1. Use the obvious conservation law: introduce the potential variable v.

 \[\text{UV : } v_x = u_t, \quad v_t = c^2(u)u_x. \]

2. Use the next obvious one: introduce the potential variable w.

 \[\text{UVW : } w_t = v, \quad w_x = u, \quad v_t = c^2(u)u_x. \]

3. Nonlocal variables: $v(x, t)$, $w(x, t)$.
Example 3: Subsystems.

- The given system:
 \[
 \begin{align*}
 UV : & \quad v_x = u, \quad v_t = K(x)u_x. \\
 U : & \quad u_t = (K(x)u_x)_x. \\
 V : & \quad v_t = K(x)v_{xx}.
 \end{align*}
 \]

- Exclude \(v \) (cross-differentiation):
 \[
 U : \quad u_t = (K(x)u_x)_x.
 \]
Example 3: **Subsystems.**

- The given system:
 \[U V : \quad v_x = u, \quad v_t = K(x)u_x. \]

- Exclude \(v \) (cross-differentiation):
 \[U : \quad u_t = (K(x)u_x)_x. \]

- Exclude \(u \) (substitution):
 \[V : \quad v_t = K(x)v_{xx}. \]
Nonlocal Symmetry: an Example

- The Nonlinear Telegraph Equations:

\[\mathbf{U} : \quad u_{tt} - (F(u)u_x)_x - (G(u))_x = 0, \quad u = u(x, t). \]

- Potential systems:

\[\mathbf{UV} : \quad u_t - v_x = 0, \quad v_t - F(u)u_x - G(u) = 0. \]

\[\mathbf{UVW} : \quad w_t - v = 0, \quad w_x - u = 0, \quad v_t - F(u)u_x - G(u) = 0. \]

- A potential symmetry \((F(u) = u^2, G(u) = u^3/3)\):

\[X_{UVW} = v \frac{\partial}{\partial x} + \left(u + \frac{w}{3} \right) \frac{\partial}{\partial t} - \frac{uv}{3} \frac{\partial}{\partial u} - \frac{v^2}{3} \frac{\partial}{\partial v} + uv \frac{\partial}{\partial w}. \]
Nonlocally Related Systems: Timeline

1987-88:

- Notion of the nonlocal symmetry used.
- Examples: nonlocal symmetries for linear wave and nonlinear diffusion equations.
1987-88:

- Symmetry classification for the potential system for the linear wave equation, variable wave speed.
- Exact general solutions for a class of wave speeds/initial data, following from nonlocal symmetries.
1990-1993:

- Linearization through nonlocal symmetries.
- Examples: Hopf-Cole transformation, a nonlinear heat conduction equation, a nonlinear telegraph equation, Thomas equation.
1990-1993:

- Sequential construction of potential systems using conserved forms of PDEs.
- Potential symmetry defined.
- Examples: A nonlinear diffusion equation, a nonlinear reaction-diffusion equation, linearizable 1D gas dynamics equations.
- Conjecture about the “ultimate” potential system, including “all” symmetries as its point symmetries.
1995-97, 2002:

- Compute conservation law multipliers as solutions of the adjoint linearization equations. Obtain potential systems.
- Basic “complete tree” for the general nonlinear diffusion equation and specific cases.
- “Linearizing factors” – a necessary condition the conservation law multipliers must satisfy so that the given system is linearizable by a contact transformation.
1995-97, 2002:

- Condition on conservation law multipliers off solution space.
- Homotopy flux formula.
1995-97, 2002:

Theorem: Every local symmetry admitted by a nondetermined potential system projects onto a local symmetry of the (determined) given PDE system.

Examples: Nonlocal symmetries and nonlocal conservation laws of Maxwell’s equations (2+1-dim.) with Lorentz gauge (cf. Anco and The for 3+1-dim.).
1995-97, 2002:

- **Euler operators** used for direct conservation law construction (multiplier determining equations).
- **Completeness of the direct construction method** for Cauchy-Kovalevskaya PDE systems stated.
2005:

For a given PDE in a conserved form, the nonclassical method was applied to the potential system and the potential equation of a nonlinear heat equation. New solutions were obtained, not equivalent to those arising from point/potential symmetries.

“Nonclassical symmetry” analysis is different for the locally related potential system and potential equation.
2005:

- Comparison of symmetry classifications of NLT equations and potential systems obtained via two consecutive conserved forms.
Nonlocally Related Systems: Timeline

- **2005:**

 - Notions of the nonlocally related subsystem and the tree of nonlocally related PDE systems introduced.
 - Trees are still constructed “sequentially”, one “level” at a time.
 - **Example:** 1+1D planar gas dynamics equations, “systematic” approach (cf. Akhatov, Gazizov, Ibragimov, 1991).
 - **Example:** General “tree” and some extensions for NLT equations.
 - The terms “nonlocal variable” and “nonlocally related PDE systems” are still rather vaguely defined – mostly example-based.
2006

- **Simultaneous use of potentials.** For n known local conservation laws of the given PDE system, use couplets, triplets, ..., n-plet to generate potential systems with 2,3,...,n potentials.
- **Theorem** (as extended in Kunzinger & Popovych, 2008)): *in order to seek nonlocal conservation law of a given system arising as a local conservation law of a potential system, one must consider multipliers that essentially depend on potentials.*
- **Examples:** Planar Gas Dynamics, Nonlinear Telegraph.
2007-2008:

An extended tree of nonlocally related PDE systems for the nonlinear wave equation \(u_{tt} = (c^2(u)u_x)_x \) is constructed. Nonlocal symmetries are classified.
2007-2008:

- An extended tree of nonlocally related PDE systems for the equations of 1-dimensional dynamic elasticity is constructed.
- Nonlocal symmetries and exact nonlocal symmetry-invariant solution is constructed.
2007-2008:

- An extended tree of NLR systems for the equations of planar gas dynamics.
- Pucci-Saccomandi extension: using a potential symmetry, substitute the ansatz into the given system (assume the potential variable is not a solution of potential equations). Does not give new results for the current example.
- Sjöberg and Mahomed extension: using a potential symmetry, do not assume invariance of the potential variable. Does not give new results for the current example. example.
- Combined (PSSM) extension: the potential variable is not invariant, and not a solution... Works!
2010 and after

- Divergence-type and Lower-degree conservation laws, and related nonlocally related systems, in multiple dimensions, are discussed.
- Known and new examples of nonlocal symmetries/CLs are summarized.
2010 and after

- **Theorem**: A point symmetry can be used to generate a nonlocally related subsystem.
- **Notion of an** inverse potential system.
- **Examples of nonlocal symmetries** that arise.
2010 and after

Theorem

Suppose a given PDE system

\[R^\sigma (x, t, u, \partial u, \partial^2 u, \ldots, \partial^l u) = 0, \quad \sigma = 1, \ldots, s \]

has precisely \(n \) linearly independent local conservation laws. Then any local symmetry of the above PDE system can be obtained by projection of some local symmetry of its \(n \)-plet potential system.
2010 and after

- Lower-degree conservation law structure of vorticity-type equations.
- A related potential system.
- Abnormality of vorticity-type equations. An *infinite number of local conservation laws* – parallel to 2nd Noether’s theorem.
- Various *physical examples*.
Conclusions

- Nonlocally related PDE systems can be systematically constructed:
 - from local CLs;
 - from point symmetries;
 - as subsystems.

- Many useful results:
 - nonlocal symmetries;
 - nonlocal conservation laws;
 - non-invertible linearizations;
 - exact solutions – classical and nonclassical; through mappings.
Open problems

- Multi-dimensions – gauge choice problem.
 - Need examples of “useful” gauge constraints leading to nonlocal symmetries from potential systems.

- Which CLs/potential systems are more likely to yield nonlocal symmetries/conservation laws? A priori determination?

- “Spectrum of singlet potential systems” – can it be useful?

- What does “nonlocal variable” actually mean? Proper definition? Extensions of the notion?
 - $v_t = u_t$, $v_x = u_x$.
 - $u_t + u_x = 0$.

A. Cheviakov (U.Saskatchewan) Nonlocally Related PDE Systems May 2014 17 / 18
Thank you for attention!