Coordinate Geometry & Lines

It is essential that the student be able to automatically apply the very basic formulas of elementary Analytic Geometry:

Distance Formula

The distance between the points \(P_1 = (x_1, y_1) \) and \(P_2 = (x_2, y_2) \) is

\[
|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}
\]

In our diagram, we take \(P_1 = (x_1, y_1) \) to be \((-1, 1)\) and \(P_2 = (x_2, y_2) \) to be \((3, 4)\).

Then

\[
|P_1P_2| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = \sqrt{(3 - (-1))^2 + (4 - 1)^2} = \sqrt{16 + 9} = \sqrt{25} = 5
\]

Slope

The slope of the line passing through the points \(P_1 = (x_1, y_1) \) and \(P_2 = (x_2, y_2) \) is

\[
m = \frac{\text{rise}}{\text{run}} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}
\]

so in our example \(m = \frac{4 - 1}{3 - (-1)} = \frac{3}{4} \)
Equations of Lines

These come in many useful forms:

Point-Slope Form
The equation of the line passing through the point \(P_1 = (x_1, y_1) \) with slope \(m \) is \(y - y_1 = m(x - x_1) \)

Thus given the point \(P_1 = (1, 2) \) and the slope \(m = -\frac{1}{3} \) the equation of the line is \(y - 2 = -\frac{1}{3}(x - 1) \)

Point-Point Form
The equation of the line passing through the points \(P_1 = (x_1, y_1) \) and \(P_2 = (x_2, y_2) \) is

\[
y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)
\]

This just comes from putting the two previous formulas together.

Slope-Intercept Form
The equation of the line passing through the \(y \)-axis at the point \((0, b)\) with slope \(m \) is

\(y = mx + b \). For example, if \(m = -\frac{1}{2} \) and \(b = 2 \), the equation is \(y = -\frac{1}{2}x + 2 \)

Intercept-Intercept Form
The equation of the line passing through the intercepts \((a, 0)\) and \((0, b)\) is

\[
\frac{x}{a} + \frac{y}{b} = 1
\]

For example, the equation of the line through \((4, 0)\) and \((0, 3)\) is \(\frac{x}{4} + \frac{y}{3} = 1 \).
General Form

Every line has infinitely many equations of the form

\[Ax + By + C = 0. \]

For any fixed line, they are non-zero multiples of each other.

Parallel & Perpendicular Lines

Two lines with slopes \(m_1 \) and \(m_2 \) are parallel if \(m_1 = m_2 \).

perpendicular if \(m_1 m_2 = -1 \).

Example: Find the equation of the line through the point \((2, 1)\) which is perpendicular to the line \(y = -\frac{1}{2}x + 2 \).

Solution: The slope of the perpendicular line is \(-\frac{1}{-\frac{1}{2}} = 2 \), so the equation of the perpendicular line is, using the Point-Slope Form:

\[y - 1 = 2(x - 2) \]
Distance from a Point to a Line

The distance from the point \(P_0 = (x_0, y_0) \) to a line \(\ell \) with equation \(Ax + By + C = 0 \) is

\[
d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}
\]

Example: Find the distance from the point \((3, 4)\) to the line with equation \(y = -\frac{1}{2}x + 2 \).

Solution: We must rewrite the equation of the line in General form:

\[
y = -\frac{1}{2}x + 2 \quad \text{becomes} \quad 2y = -x + 2 \quad \text{or} \quad x + 2y - 2 = 0,
\]

so we apply the Distance Formula with \(x_0 = 3, \; y_0 = 4, \; A = 1, \; B = 2, \) and \(C = -2 \):

\[
d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}} = \frac{|(1)(3) + (2)(4) + (-2)|}{\sqrt{(1)^2 + (2)^2}} = \frac{|3 + 8 - 2|}{\sqrt{1 + 4}} = \frac{9}{\sqrt{5}}
\]