On a Theorem of Tignol for Defectless extensions and its converse

Amrit Pal Singh and Sudesh K. Khanduja
Department of Mathematics, Panjab University, Chandigarh-160014, India.
E-mail: amrit_yirk@rediffmail.com, skhand@pu.ac.in

Abstract. Let \((K, v)\) be a Henselian valued field of arbitrary rank. In 1990, Tignol proved that if \((K', v')/(K, v)\) is a finite separable defectless extension of degree a prime number, then the set \(A_{K'/K} = \{v(Tr_{K'/K}(\alpha)) - v'(\alpha) \mid \alpha \in K', \alpha \neq 0\}\) has a minimum element. This paper extends Tignol’s result to all finite separable extensions. Moreover a characterization of finite separable defectless extensions is given by showing that \((K', v')/(K, v)\) is a defectless extension if and only if the set \(A_{K'/K}\) has a minimum element. Our proof also leads to a new proof of the well known result that each finite extension of a formally \(\varphi\)-adic field (or more generally of a finitely ramified valued field) is defectless.

2000 Subject Classification No: 12J10, 12J25.

Key words and phrases: valued fields, Non-Archimedean valued fields.

\footnote{The authors are thankful to the Council of Scientific and Industrial Research, New Delhi for financial support.}
\footnote{All correspondence may be addressed to this author.}
1. Introduction

Throughout this paper, \(v \) is a Henselian valuation of arbitrary rank of a field \(K \) with residue field \(R(K) \) and \(\bar{v} \) is the unique prolongation of \(v \) to a fixed algebraic closure \(\overline{K} \) of \(K \). A finite extension \((K', v')/(K, v) \) (or briefly \(K'/K \)) will be called defectless if \([K': K] = ef\) where \(e \) and \(f \) are respectively the index of ramification and the residual degree of \(v'/v \). This extension will be referred to as tame if (a) it is defectless; (b) the residue field of \(v' \) is a separable extension of the residue field of \(v \); (c) the ramification index of \(v'/v \) is not divisible by the characteristic of the residue field of \(v \).

Let \((K', v') \subseteq (\overline{K}, \bar{v})\) be a finite extension of \((K, v)\). Since \((K, v)\) is Henselian, for any \(\alpha \) in \(K' \) and \(\sigma \) in \(Gal(\overline{K}/K) \), \(\bar{v} \circ \sigma(\alpha) = \bar{v}(\alpha) \) and consequently \(v(T r_{K'/K}(\alpha)) \geq v'(\alpha) \); here and elsewhere \(T r \) stands for the trace. In 1990, Tignol proved that if \((K', v')/(K, v)\) is a finite separable extension of degree any prime number, then the set \(A_{K'/K} \) defined by

\[
A_{K'/K} = \{ v(T r_{K'/K}(\alpha)) - v'(\alpha) | \alpha \in K', \alpha \neq 0 \}
\]

has a minimum element provided \((K', v')/(K, v)\) is a defectless extension (cf.[4, Prop. 2.5] or [5, Lemma 1.1]). He also proved that the smallest element of \(A_{K'/K} \) is zero in case \((K', v')/(K, v)\) is a tame extension. In 2000, Khanduja [2] proved that the above result of Tignol in fact holds for all finite tame extensions and showed that a finite separable extension \((K', v')\) of a Henselian valued field \((K, v)\) is tame if and only if zero is the minimum element of \(A_{K'/K} \). We have observed that if \((K', v')/(K, v)\) is any finite separable defectless extension, then the set \(A_{K'/K} \) has a minimum element (see Lemma 2.2). This gives rise to the following natural question.

Let \((K', v')/(K, v)\) be a finite separable extension for which the set \(A_{K'/K} \) has a minimum element. Is it true that \((K', v')\) is a defectless extension of \((K, v)\)?

In this paper, we prove that the answer to the above question is in the affirmative. In other words, it is proved that a finite separable extension \((K', v')\) of \((K, v)\) is de-
fectless if and only if the set $A_{K'/K}$ has a minimum element. It will be shown that this characterization of defectless extensions quickly implies that every finite extension of a finitely ramified valued field is defectless, thereby providing a new proof of this well known result. Recall that a valued field (K,v) is said to be finitely ramified if the value group of v admits a least positive element λ and there is a prime number p and a natural number e such that $v(p) = e\lambda$; such a valued field has characteristic 0 and p is the characteristic of its residue field.

In the course of proof we use the notion of valuation basis. A set $\{x_1, ..., x_n\}$ of elements of an n-dimensional extension (K',v') of (K,v) is said to be a valuation basis of $(K',v')/(K,v)$ if for every choice of elements $a_i \in K$, we have $v'(\sum_{i=1}^{n} a_i x_i) = \min_{i=1}^{n} \{v'(a_i x_i)\}$. Note that a valuation basis of $(K',v')/(K,v)$ is linearly independent over K and hence is a basis of K'/K.

The main result of the present paper is the following:

Theorem 1.1. Let v be a Henselian valuation of arbitrary rank of a field K. Let K'/K be a finite separable extension and v' be the prolongation of v to K'. Then the following statements are equivalent.

(i) (K',v') is a defectless extension of (K,v).

(ii) $(K',v')/(K,v)$ has a valuation basis.

(iii) The set $A_{K'/K} = \{v(Tr_{K'/K} (\beta)) - v'(\beta) | \beta \in K', \beta \neq 0\}$ has a minimum element.

The following corollary will be deduced from the above theorem.

Corollary 1.2. Each finite extension of a finitely ramified Henselian valued field is defectless.

2. Some preliminary results

Let (K,v) and $(\overline{K}, \overline{v})$ be as in the preceding section. For any ξ in the valuation ring
of \tilde{v}, ξ^* will denote its \tilde{v}-residue, i.e., the image of ξ under the canonical homomorphism from the valuation ring of \tilde{v} onto its residue field.

The result of the following lemma is well known. For the sake of completeness, we give its proof here.

Lemma 2.1. Let (K', v') be a finite defectless extension of a Henselian valued field (K, v). Then it has a valuation basis.

Proof. Let $G \subseteq G'$ and $R(K) \subseteq R(K')$ denote respectively the value groups and the residue fields of v and v'. Let e and f stand respectively for the index of G in G' and the degree of the extension $R(K')/R(K)$. Choose elements x_1, \ldots, x_e in K' for which the cosets $G + v'(x_1), \ldots, G + v'(x_e)$ are all distinct. Choose y_1, \ldots, y_f in the valuation ring of v' such that their v'-residues y^*_1, \ldots, y^*_f are linearly independent over $R(K)$. Observe that the extension $(K', v')/(K, v)$ being defectless, has degree ef. Claim is that the set

$$\{ x_i y_j, \ 1 \leq i \leq e, \ 1 \leq j \leq f \}$$

is a valuation basis of $(K', v')/(K, v)$. Suppose that the claim is false. Then there exists an element $x = \sum_{j=1}^f \sum_{i=1}^e a_{ij} x_i y_j$ in K' with a_{ij} in K for which $v'(x) > \min_{i,j} \{v'(a_{ij} x_i y_j)\}$. If necessary after renaming, we may assume that $\min_{i,j} \{v'(a_{ij} x_i y_j)\} = v'(a_{11} x_1 y_1)$. The elements y^*_1, \ldots, y^*_f being linearly independent over $R(K)$ are non-zero and hence $v'(y_j) = 0, \ 1 \leq j \leq f$. Thus we have

$$v'(\sum_{i=1}^e \sum_{j=1}^f a_{ij} x_i y_j) > \min_{i,j} \{v'(a_{ij} x_i y_j)\} = v'(a_{11} x_1). \quad (2)$$

Since $G + v'(x_1)$ is different from $G + v'(x_i)$ when $2 \leq i \leq e$, it follows from the equality in (2) that $v'(a_{ij} x_i y_j) > v'(a_{11} x_1)$ for $2 \leq i \leq e, \ 1 \leq j \leq f$; consequently

$$v'(\sum_{i=2}^e \sum_{j=1}^f a_{ij} x_i y_j) > v'(a_{11} x_1).$$

Therefore (2) implies that

$$v'(\sum_{j=1}^f a_{1j} x_1 y_j) > v'(a_{11} x_1).$$

The above inequality shows that $\sum_{j=1}^f \left(\frac{a_{1j}}{a_{11}} \right) y^*_j = 0^*$ which contradicts the linear indepen-
dence of y^*_1, \ldots, y^*_n over $R(K)$. This contradiction proves the lemma.

Lemma 2.2. Suppose that a finite separable extension (K', v') of a Henselian valued field (K, v) has a valuation basis w_1, \ldots, w_n. Then the set $A_{K'/K}$ defined by (1) has smallest element equal to $\min_{1 \leq i \leq n} \{v(Tr_{K'/K}(w_i)) - v'(w_i)\}$.

Proof. Let $\beta = \sum_{i=1}^{n} a_i w_i$ be any non-zero element of K', $a_i \in K$. Then

$$v'(\beta) = \min_{i} v'(a_i w_i) = v'(a_k w_k) \text{ (say).} \quad (3)$$

Using the triangle law, we have

$$v(Tr_{K'/K}(\beta)) \geq \min_{i} \{v(a_i Tr_{K'/K}(w_i))\} = v(a_j) + v(Tr_{K'/K}(w_j)) \text{ (say).} \quad (4)$$

It follows from (3) and (4) that

$$v(Tr_{K'/K}(\beta)) - v'(\beta) \geq v(a_j) + v(Tr_{K'/K}(w_j)) - v'(a_k w_k)$$

$$\geq v(a_j) + v(Tr_{K'/K}(w_j)) - v'(a_j w_j)$$

$$= v(Tr_{K'/K}(w_j)) - v'(w_j).$$

Thus we have shown that for any $\beta \neq 0$ in K', the inequality

$$v(Tr_{K'/K}(\beta)) - v'(\beta) \geq \min_{1 \leq i \leq n} \{v(Tr_{K'/K}(w_i)) - v'(w_i)\}$$

holds as desired.

As usual, an extension $(K', v')/(K, v)$ (or briefly K'/K when the underlying valuations are clear) will be called an immediate extension if v' and v have the same value group and the same residue field.

Lemma 2.3. Let (K', v') be a finite separable extension of a Henselian valued field (K, v). Let L be an intermediate field such that K'/L is an immediate extension of
degree strictly greater than one. Then the set $A_{K'/K}$ defined by (1) does not have any minimum element.

Proof. To prove the lemma, it is clearly enough to show that for any given non-zero element ξ in K', there exists an element η in K' satisfying the following two conditions

$$v'(\eta) > v'(\xi), \quad Tr_{K'/K}(\eta) = Tr_{K'/K}(\xi).$$ \hspace{1cm} (5)

We split the proof in two cases.

Case (i). Char $K = 0$. In this case there exists a generator θ of the extension K'/L with $Tr_{K'/L}(\theta) = 0$. Since K'/L is an immediate extension, on replacing θ by θ/α for a suitable element $\alpha \in L$, we can assume that

$$v'(\theta) = 0 \text{ and } \theta^* = 1^*.$$ \hspace{1cm} (6)

Let ξ be any non-zero element of K'. Using the fact that K'/L is an immediate extension, we can choose an element c belonging to L satisfying

$$(\xi/c)^* = -1^*.$$ \hspace{1cm} (7)

We verify that (5) holds for the element η defined by $\eta = \xi + c\theta$. It follows from (6) and (7) that

$$(\eta/\xi)^* = 1^* + (c/\xi)^* \theta^* = 0^*.$$

Therefore $v'(\eta) > v'(\xi)$. Since $Tr_{K'/L}(\theta) = 0$, we have

$$Tr_{K'/K}(\eta) = Tr_{K'/K}(\xi) + Tr_{L/K}(cTr_{K'/L}(\theta)) = Tr_{K'/K}(\xi)$$

as desired.

Case (ii). Char $K = p > 0$. Let ξ be any non-zero element of K'. Fix an element c of L satisfying (7). Define an element η of K' by $\eta = \xi + c$. Then clearly

$$(\eta/\xi)^* = 1 + (c/\xi)^* = 0^*.$$
Since \(\text{char } K = p > 0 \), and \(K'/L \) is an extension of degree \(p^r > 1 \), we have \(\text{Tr}_{K'/L}(c) = p^r c = 0 \). Therefore \(\eta \) satisfies (5).

Lemma 2.4. Let \((K', v')(K, v)\) be a finite separable extension of Henselian valued fields. Let \(L \) be an intermediate field such that \(K'/L \) is a defectless extension with respect to the valuation obtained by restricting \(v' \) to \(L \). Suppose that \(A_{K'/K} \) has a minimum element, then \(A_{L/K} \) has a minimum element.

Proof. As \(K'/L \) is a defectless extension, it has a valuation basis \(\theta_1, \ldots, \theta_m \) by virtue of Lemma 2.1. We denote \(\min A_{K'/K} \) by \(\lambda \) and set

\[
t_i = \text{Tr}_{K'/L} (\theta_i), \quad 1 \leq i \leq m.
\]

Let \(\beta = \sum_{i=1}^{m} a_i \theta_i, a_i \in L \), be an element of \(K' \) such that \(\lambda = v(\text{Tr}_{K'/K}(\beta)) - v'(\beta) \), i.e.,

\[
\lambda = v\left(\sum_i T_{L/K}(a_i t_i) \right) - v'(\sum_i a_i \theta_i).
\]

If an index \(s \) is defined so as

\[
\min_i \{ v(T_{L/K}(a_i t_i)) \} = v(T_{L/K}(a_s t_s)),
\]

then we are going to show that \(a_s t_s \neq 0 \) and

\[
\lambda = v(T_{K'/K}(a_s \theta_s)) - v'(a_s \theta_s);
\]

this will be used to prove that

\[
\min A_{L/K} = v(T_{L/K}(a_s t_s)) - v'(a_s t_s)
\]

which will complete the proof of the lemma.

Observe that \(a_s t_s \neq 0 \), for otherwise \(T_{L/K}(a_i t_i) = 0 \) for \(1 \leq i \leq m \) by virtue of (9); this would imply that \(T_{K'/K}(\beta) = \sum_i T_{K'/K}(a_i \theta_i) = \sum_i T_{L/K}(a_i t_i) = 0 \) leading to \(\lambda = \infty \), which is impossible as \(K'/K \) is a separable extension. Using (8) and (9) and the fact that \(\theta_1, \ldots, \theta_m \) is a valuation basis of \(K'/L \), we see that

\[
\lambda \geq \min_i \{ v(T_{L/K}(a_i t_i)) \} - \min_i \{ v'(a_i \theta_i) \}
\]
\[\geq v(Tr_{L/K}(a_st_s)) - v'(a_s\theta_s) \]

\[= v(Tr_{K'/'K}(a_s\theta_s)) - v'(a_s\theta_s). \]

Indeed the inequality \(\lambda \geq v(Tr_{K'/'K}(a_s\theta_s)) - v'(a_s\theta_s) \) just proved must be an equality by virtue of the fact that \(\lambda \) is minimum of \(A_{K'/'K} \). This proves (10).

Suppose to the contrary that (11) is false. Then there exists a non-zero element \(c \) of \(L \) such that

\[v(Tr_{L/K}(c)) - v'(c) < v(Tr_{L/K}(a_st_s)) - v'(a_st_s). \quad (12) \]

As \(t_s \neq 0 \), we can write \(c \) as \(bt_s, b \in L \). Consider the element \(b\theta_s \) of \(K' \). Keeping in mind (12) and the equality \(Tr_{K'/'L}(\theta_s) = t_s \), a simple calculation shows that

\[v(Tr_{K'/'K}(b\theta_s)) - v'(b\theta_s) = v(Tr_{L/K}(bt_s)) - v'(bt_s) \]

\[< v(Tr_{L/K}(a_st_s)) - v'(a_st_s) + v'(bt_s) - v'(b\theta_s) \]

\[= v(Tr_{K'/'K}(a_s\theta_s)) - v'(a_s\theta_s). \]

Therefore it now follows from (10) that

\[v(Tr_{K'/'K}(b\theta_s)) - v'(b\theta_s) < \lambda \]

which is impossible as \(\lambda \) is the minimum element of the set \(A_{K'/'K} \). This contradiction proves (11) and hence the lemma.

We shall use the following already known theorem. Its proof is omitted (see [2]).

Theorem 2A. A finite separable extension \((K', v')\) of a Henselian valued field \((K, v)\) is tame if and only if there exists \(\alpha \neq 0 \) in \(K' \) satisfying \(v(Tr_{K'/'K}(\alpha)) = v'(\alpha) \).

We now prove a theorem which will be used to prove Theorem 1.1; it is of independent interest as well.
Theorem 2.5. Let \((K, v) \subseteq (K', v') \subseteq (K'', v'')\) be a tower of finite separable extensions. Suppose that \(A_{K''/K'}\) and \(A_{K'/K}\) have minimum elements. Then \(A_{K''/K}\) has a minimum element which equals \(\min A_{K''/K'} + \min A_{K'/K}\).

Proof. Let \(\alpha\) be any non-zero element of \(K''\). We can write

\[
v(T_{K''/K}(\alpha)) - v''(\alpha) = v(T_{K'/K}(T_{K''/K'}(\alpha))) - v'(T_{K''/K'}(\alpha)) + \]
\[
v'(T_{K''/K'}(\alpha)) - v''(\alpha).
\]

This shows that \(A_{K''/K} \subseteq A_{K''/K'} + A_{K'/K}\); hence \(A_{K''/K}\) is bounded from below by \(\min A_{K''/K'} + \min A_{K'/K}\). On the other hand, if \(a' \in K'\) and \(\gamma \in K''\) satisfy

\[
v(T_{K'/K}(a')) - v'(a') = \min A_{K'/K}
\]

and

\[
v'(T_{K''/K'}(\gamma)) - v''(\gamma) = \min A_{K''/K'},
\]

then one can quickly verify that \(b = \gamma a'T_{K''/K'}(\gamma)^{-1}\) satisfies

\[
v(T_{K''/K}(b)) - v''(b) = \min A_{K''/K'} + \min A_{K'/K};
\]

hence \(\min A_{K''/K'} + \min A_{K'/K} \in A_{K''/K}\). The theorem follows.

The corollary stated below is an immediate consequence of the above theorem and Theorem 2.A.

Corollary. Let \((K, v) \subseteq (K', v') \subseteq (K'', v'')\) be a tower of finite separable extensions such that \(K''/K'\) is a tame extension. Suppose that \(A_{K'/K}\) has a minimum element. Then \(A_{K''/K}\) has a minimum element which equals \(\min A_{K'/K}\).

The following theorem which will be used in the sequel is essentially proved in [3, Lemma 3.15]. For the sake of readers’ convenience and ready reference, we give its proof here.
Theorem 2.6. Let \(v \) be a Henselian valuation of a field \(K \) whose residue field is of characteristic \(p > 0 \). Let \(w \) be its prolongation to the separable closure \(K^{\text{sep}} \) of \(K \). Let \(K' \subseteq K^{\text{sep}} \) be a finite extension of \(K \) which is not tame. Then there exists a finite tame extension \(T \) of \(K \) such that \(TK'/T \) is a tower of extensions of degree \(p \) each.

Proof. Let \(K^V \) denote the maximal tame extension of \((K,v)\) contained in \((K^{\text{sep}},w)\). By ramification theory, \(K^V \) is the ramification field of the extension \((K^{\text{sep}},w)/(K,v)\) and \(K^{\text{sep}}/K^V \) is a \(p \)-extension (cf. [1, 22.7, 20.18]). Write \(K' = K(\alpha) \). Let \(K^V(\alpha_1,\ldots,\alpha_s) \) be the smallest Galois extension of \(K^V \) containing \(\alpha \). Consider the groups

\[
H_o = \text{Gal}(K^V(\alpha_1,\ldots,\alpha_s)/K^V), \quad H = \text{Gal}(K^V(\alpha_1,\ldots,\alpha_s)/K^V(\alpha)).
\]

Since \(K'/K \) is not a tame extension, \(\alpha \) does not belong to \(K^V \). Therefore \(|H_o| > 1 \); in fact by what has been said in the above paragraph, the order of \(H_o \) must be a power of \(p \). So there exists a descending chain of subgroups

\[
H_o \supset H_1 \supset \ldots \supset H_t = H \supset H_{t+1} \supset \ldots \supset \{e\}
\]

such that each \(H_i \) is a normal subgroup of \(H_{i-1} \) of index \(p \). Let \(K^V(\beta_1), K^V(\beta_1,\beta_2), \ldots, K^V(\beta_1,\ldots,\beta_t) = K^V(\alpha) \) denote respectively the fixed fields of \(H_1,\ldots,H_t = H \). It is clear that

\[
K^V \subset K^V(\beta_1) \subset K^V(\beta_1,\beta_2) \subset \ldots \subset K^V(\beta_1,\ldots,\beta_t) = K^V(\alpha)
\]

is a tower of extensions of degree \(p \) each. Assume without loss of generality that \(\beta_t = \alpha \).

Let \(X^p + a_{11}X^{p-1} + \ldots + a_{1p} \) be the minimal polynomial of \(\beta_1 \) over \(K^V \). Let \(K_1 \) denote the field obtained by adjoining to \(K \) the coefficients \(a_{11},\ldots,a_{1p} \). Let \(X^p + b_{21}X^{p-1} + \ldots + b_{2p} \) be the minimal polynomial of \(\beta_2 \) over \(K^V[\beta_1] \). We can write \(b_{2i} \) as

\[
b_{2i} = \sum_{j=0}^{p-1} a_{2ij}\beta_1^j, \quad a_{2ij} \in K^V.
\]

Let \(K_2 \) denote the field obtained by adjoining to \(K_1 \) the \(p^2 \) elements \(\{a_{2ij}, 1 \leq i \leq p, 0 \leq j \leq p - 1\} \). Repeating this process \(t \) times, we obtain a subfield \(K_t \) of \(K^V \) which
is a finite tame extension of K. Denote K_t by T. Clearly

$$T \subset T(\beta_1) \subset T(\beta_1, \beta_2) \subset \ldots \subset T(\beta_1, \ldots, \beta_t)$$

(14)

is a tower of extensions of degree p each. Since $T(\beta_1, \ldots, \beta_t)$ contains $\beta_t = \alpha$ and α is algebraic over K^V of degree p^t by virtue of (13), it now follows from (14) that $T(\beta_1, \ldots, \beta_t) = T(\alpha) = TK'$. This completes the proof of the theorem.

3. Proof of Theorem 1.1 and Corollary 1.2.

Proof of Theorem 1.1. The assertions $(i) \implies (ii)$ and $(ii) \implies (iii)$ hold in view of Lemma 2.1 and Lemma 2.2 respectively. We now prove $(iii) \implies (i)$. Since every finite tame extension is defectless, it may be assumed that K'/K is not a tame extension. Let the prime number p denote the characteristic of the residue field of v. Applying Theorem 2.6, we see that there exists a tame extension T of K such that TK'/T is a tower of extensions $T \subset T_1 \subset \ldots \subset T_s = TK'$ of degree p each. Since tameness is preserved under composition [1, 20.15(b)], TK'/K' is a tame extension. By hypothesis $A_{K'/K}$ has a minimum element. Therefore by the corollary following Theorem 2.5, $\min A_{TK'/K}$ exists. It now follows from Lemma 2.3 that the extension $T_s = TK'$ of T_{s-1} having degree p is defectless. Now applying Lemma 2.4 to the tower of extensions $K \subset T_{s-1} \subset T_s$, we see that $\min A_{T_{s-1}/K}$ exists. Repetition of the above argument (with T_s replaced by T_{s-1}) yields that T_{s-2}/T_{s-1} is defectless and $\min A_{T_{s-2}/K}$ exists. Continuing this process s times, we conclude that $T_s = TK'$ is a defectless extension of T. Also T/K being tame is defectless. Consequently TK'/K is a defectless extension and so is K'/K.

Proof of Corollary 1.2. Let (K', v') be an extension of a finitely ramified Henselian valued field (K, v) of degree ν. Let p be the characteristic of the residue field of v and $v(p)/e$ be the least positive element of the value group G of v. Let r be the largest positive integer such that $v(p)/er$ belongs to the value group G' of v'. We indeed verify that the smallest convex subgroup C of G' containing $v(p)$ is the cyclic group generated by

$$\ldots$$
$v(p)/er$. Note that an element g' of G' belongs to C if and only if $\max\{g', -g'\} \leq sv(p)$ for some positive integer s. Let h be any positive element of C. There exists a non-negative integer m such that $mv(p)/e \leq nh < (m + 1)v(p)/e$. As $v(p)/e$ is the least positive element of G and $nh - mv(p)/e$ belongs to G, it follows that $nh = mv(p)/e$. So we can write $h = av(p)/ber$ where a and b are coprime positive integers. If a', b' are integers satisfying $aa' + bb' = 1$, then it is clear that $v(p)/ber = a'h + (b'v(p)/er)$ is an element of G'. Since r is the largest integer such that $v(p)/er$ belongs to G', we conclude that $b = 1$ and hence $h = av(p)/er$ is in the cyclic group generated by $v(p)/er$ as desired.

To prove that $(K', v')/(K, v)$ is defectless, in view of Theorem 1.1, it is enough to show that the set $A_{K'/K}$ has a minimum element. Observe that $v(Tr_{K'/K}(1)) - v(1) = v(n)$ belongs to $A_{K'/K} \cap C$. Since C is the cyclic group generated by $v(p)/er$, it follows that $\min A_{K'/K} = qv(p)/er$ where q is the least non-negative integer such that $qv(p)/er$ belongs to $A_{K'/K}$.

Acknowledgments

The authors are highly grateful to Professor N. Sankaran former Professor, Panjab University (Chandigarh) for numerous discussions and constructive suggestions.

References

