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Motivation from Birational Algebra

Problem: Find a framework for classifying/describing/studying integrally
closed domains when viewed as intersections of valuation rings.

Outline of talk:

(a) The Zariski-Riemann space as a locally ringed spectral space

(b) Affine subsets of the Zariski-Riemann space and Prüfer domains

(c) Geometric criteria for Prüfer intersections

(d) Patch topology and intersection representations

(e) Quadratic transforms of regular local rings

(f) Overrings of two-dimensional Noetherian domains



The Zariski-Riemann space

Let F be a field and D be a subring of F (e.g., D is prime subring of F ).

X = projective limit of the projective models of F/D.

X is the Zariski-Riemann space of valuation rings of F containing D with
the topology inherited from the projective limit

Basis of the topology is given by sets of form

U(x1, . . . , xn) = {V ∈ X : x1, . . . , xn ∈ V }.

X is quasicompact (Zariski, 1944).

Why Zariski cared: finite resolving system can replace an infinite one.

Theorem (Dobbs-Federer-Fontana, Heubo-Kwegna, Kuhlmann,...)

X is a spectral space.

Proof: X ' prime spectrum of the Kronecker function ring of F/D.



Why the name?

Nagata, 1962:

The name of Riemann is added because Zariski called this space
‘Riemann manifold’ in the case of a projective variety, though
this is not a Riemann manifold in the usual sense in differential
geometry. The writer believes that the motivation for the
terminology came from the case of a curve. Anyway, the notion
has nearly nothing to do with Riemann, hence the name ‘Zariski
space’ is seemingly preferable. But, unfortunately, the term
‘Zariski space’ has been used in a different meaning [e.g., a
Noetherian topological space for which every nonempty closed
irreducible subset has a unique generic point]. Therefore we are
proposing the name ‘Zariski-Riemann space’.



A subset of X is qcpt and open iff it is a finite union of sets of form

U(x1, . . . , xn) = {V ∈ X : x1, . . . , xn ∈ V }.

Inverse topology: closed basis of qcpt open sets

...Also called the dual topology.

Patch topology: basis of qcpt opens and their complements

...compact, Hausdorff and zero-dimensional.

Every cpct Hausdorff zero-dim’l space having an isolated point arises as
the patch space of a Zariski-Riemann space (even an affine scheme).



Sheaf structures

Intersection presheaf: O(U) :=
⋂

V∈U V (U open in X).

Zariski topology ⇒ O is a sheaf.

Inverse or patch topologies: must sheafify.

Zariski topology: Main virtue: compatible with morphisms into schemes.

Patch topology: Result is a “Pierce” sheaf: ringed Stone space with in-
decomposable stalks. O(X) is a complicated ring with many idempotents.
The geometry here is really algebra is disguise: The global sections functor
is exact, hence cohomologically trivial.

Inverse topology: Ring of global sections can contain idempotents. Dis-
advantage: Stalks need not be valuation rings (but are a kind of pullback
ring).



Affine subsets of X

X = Zariski-Riemann space of F/D with the Zariski topology.

“Non-degenerate” case: When is Z → Spec(
⋂

V∈Z V ) an isomorphism?

I.e., which subspaces of X are affine schemes?

Proposition.
Z ⊆ X is an affine scheme iff
Z is inverse closed and A =

⋂
V∈Z V is a Prüfer domain with q.f. F .

An integral domain A is a Prüfer domain if AM is a valuation domain for
each maximal ideal M of A.

So to detect when an intersection of valuation rings is Prüfer is the same
as detecting when a subspace of X is an affine scheme.



Prüfer domains

Prüfer domains are a fundamental object of study in non-Noetherian
commutative ring theory and multiplicative ideal theory.

≥ 100 characterizations (ideal-theoretic, module-theoretic, homological)

Examples:

• Finite intersection of valuation rings
• Ring of entire functions
• The ring of integer-valued polynomials Int(Z)
• Real holomorphy rings



Criterion for affiness

D = subring of the field F .

Recall: A =
⋂

V∈Z V is a Prüfer domain iff Z ⊆ affine scheme in X

Theorem. (O.–, 2014)

A =
⋂

V∈Z V is Prüfer image of each D-morphism Z → P1
D

with quotient field F ⇐= is in a distinguished affine open
and torsion Picard group subset of P1

D

P1
D is covered by many affine open subsets.

What conditions guarantee Z → P1
D lands in one of them?



Applications

Three classical independent results about Prüfer intersections can now be
reduced to prime avoidance arguments...

Corollary. (Nagata) A =
⋂

V∈Z V is Prüfer when Z is finite.

Proof.

Let φ : Z → P1
D be a morphism.

Its image is finite.

Prime Avoidance ⇒ ∃f ∈ D[T0,T1] not in any prime ideal in Im φ.

{P ∈ P1
D : f 6∈ P} is an affine open set containing Im φ.

So by the theorem, A is Prüfer.

(In fact, f can be chosen to be linear and this implies that A is Bézout.)



Corollary. (Dress, Gilmer, Loper, Roquette, Rush)

A =
⋂

V∈Z V is Prüfer when there exists a nonconstant monic polynomial

f ∈ A[T ] that has no root in residue field of any V ∈ Z .

Proof.

Let φ : Z → P1
D be a morphism.

Let f be the homogenization of f .

Then {P ∈ P1
D : f 6∈ P} is an affine open set containing Im φ.

So by the theorem, A is Prüfer with torsion Picard group.

Example: Use f (X ) = X 2 + 1 to show the real holomorphy ring is Prüfer.



Corollary. (Roitman)

A =
⋂

V∈Z V is Bézout when A contains a field of cardinality > |Z |.

Proof.

Let φ : Z → P1
D be a morphism.

Use the fact that there are more units in A than valuation rings in Z to
construct a homogeneous f ∈ D[T0,T1] that is not contained in any
prime ideal in the image of φ.

Then {P ∈ P1
D : f 6∈ P} is an affine open set containing Im φ.

So by the theorem, A is Prüfer.

(In fact, f can be chosen to be linear, so A is a Bézout domain.)



Local uniformization

Corollary

D = quasi-excellent local Noetherian domain with quotient field F .

Z = valuation rings dominating D that don’t admit local uniformization.

If Z 6= ∅, then
⋂

V∈Z V is a Prüfer domain with torsion Picard group.

So if nonempty, Z lies in an affine scheme in X.



Patch topology

Patch topology: qcpt opens and their complements as a basis

Conrad-Temkin, Favre-Jonsson, Finnocchiaro-Fontana-Loper,
Huber-Knebusch, Knaf-Kuhlmann, Kuhlmann, O.-, Prestel-Schwartz,...

Patch density: useful for replacing a valuation with a “better” one that
behaves the same on a finite set of data

Suppose Z is patch dense in X and V ∈ X.

x1, . . . , xn ∈ V , y1, . . . , ym ∈MV =⇒ ∃W ∈ Z with same property

F.-V. Kuhlmann has proved a number of deep theorems for patch density
in the space of valuations on a function field.

Patch density is useful for understanding the ideal theory of real
holomorphy rings (O-, 2005).



Patch limit points

Theorem. (Finnocchiaro, Fontana, Loper, 2013)

V is a patch limit point of Z ⊆ X iff

V = {x ∈ F : {V ∈ Z : x ∈ V } ∈ F},

where F is a nonprincipal ultrafilter on Z .

Theorem (O-, 2014)

Suppose Spec(D) is a Noetherian space.

V ∈ {patch closure of Z} iff in every projective model X of F/D,

V maps to a generic point for a subset of the image of Z in X .

So patch limit points arise from generic points in the projective models.



Example: Accounting for all valuations

A non-constructive “construction” of all valuations in a function field...

Theorem (Kuhlmann, 2004)

F/k = function field.

The set of DVRs in X whose residue fields are finite over k is patch dense.

=⇒ every valuation ring in X is an ultrafilter limit of such DVRs.

These DVRs arise from prime ideals in the generic formal fiber of local
rings of closed points in projective models of (Heinzer-Rotthaus-Sally,
1993).

“Taking completions” then “taking ultrafilter limits” give all valuations.



Application: Intersection representations

A subset Z of X represents a ring R if R =
⋂

V∈Z V .

Theorem (O-, 2015)

Every patch closed rep. of a ring contains a minimal patch closed rep.

isolated point ⇐⇒ irredundant member of the representation

(=⇒ consequences for uniqueness and existence of representations).

Theorem

(A,M) = integrally closed local domain with End(M) = A.

=⇒ A is a val’n domain or ∃ perfect dominating representation of A.

Corollary
A = completely integrally closed local domain

∃ dominating rep’n with countably many limit points =⇒ valuation ring.



More Prüfer criteria

Theorem

(D,m) = local subring of F that is not a field.

Z = set of dominating, rank 1 valuations rings.

|{limit points of Z}| < ℵ0 · |D/m| =⇒
⋂
V∈Z

V is a Prüfer domain.

Corollary.

|{limit points of Z}| = finite =⇒
⋂
V∈Z

V is a Prüfer domain.

Application: “Order holomorphy ring”

Let R = RLR, X = blow-up of Spec(R) at the maximal ideal.
Vx = order valuation ring of OX ,x (x = closed point)

=⇒
⋂

x Vx is a Prüfer domain. (What information does it contain?)



Application: Quadratic Transforms

Theorem. (Heinzer, Loper, O-, Schoutens, Toenskoetter)
R = RLR of dimension > 1; {Ri}= sequence of local quadratic transforms.

=⇒
⋃

i Ri = V ∩ T ,

T = smallest Noetherian overring (it’s a localization of one of the Ri )
V = unique patch limit point of the order valuation rings of the Ri ’s.

Theorem. (Heinzer, O.-, Toenskoetter)
∃ an explicit asymptotic description of V (in particular, rank V = 2).

Application of Prüfer criterion:
V is a localization of the intersection of the order valuation rings.

Reason: The intersection of the order valuation rings is a Prüfer domain.



Application: Overrings of two-dim’l Noetherian domains

Suppose D is a two-dimensional Noetherian domain with q.f. F .

Goal: Describe the integrally closed rings
⋂

V∈Z V between D and F .

Special case: ∃ morphism Z → P1
D with “small” fibers.

This is in keeping with the philosophy of understanding intersections of
valuation rings when there are not “too many” of them.

Theorem. Suppose ∃ morphism Z → P1
D with Noetherian fibers. Then

(1) ∃ unique strongly irredundant representation of O(Z ) =
⋂

V∈Z V .

(2) ∃ local classification of the ring O(Z ) (somewhat involved).

Note: This includes all integrally closed Noetherian domains.



Application to Rees valuations

Theorem (O-, Tartarone, 2013)
Suppose

D = two-dimensional regular local ring with regular parameter f .

D is equicharacteristic or has mixed characteristic with f a prime integer.

A = integral closure of a finitely generated D-subalgebra of Df .

Then distinct height one prime ideals of A lying over the maximal ideal of
D are comaximal.

Thus A is “essentially one-fibered.”

Question: If f is not a regular parameter, is there a bound on the
number of height one primes of A lying over the maximal ideal of D and
contained in the same maximal ideal of A? I.e., is each A essentially
n-fibered?

“Yes” ⇒ nice consequences for not-necessarily-Noetherian overrings of D.



Thank you


