Intersecting valuation rings in the Zariski-Riemann space of a field

Bruce Olberding

Department of Mathematical Sciences New Mexico State University

November, 2015

Motivation from Birational Algebra

Problem: Find a framework for classifying/describing/studying integrally closed domains when viewed **as intersections of valuation rings**.

Outline of talk:

- (a) The Zariski-Riemann space as a locally ringed spectral space
- (b) Affine subsets of the Zariski-Riemann space and Prüfer domains
- (c) Geometric criteria for Prüfer intersections
- (d) Patch topology and intersection representations
- (e) Quadratic transforms of regular local rings
- (f) Overrings of two-dimensional Noetherian domains

The Zariski-Riemann space

Let F be a field and D be a subring of F (e.g., D is prime subring of F).

 $\mathfrak{X} =$ projective limit of the projective models of F/D.

 $\mathfrak X$ is the Zariski-Riemann space of valuation rings of F containing D with the topology inherited from the projective limit

Basis of the topology is given by sets of form

$$\mathcal{U}(x_1,\ldots,x_n)=\{V\in\mathfrak{X}:x_1,\ldots,x_n\in V\}.$$

 \mathfrak{X} is quasicompact (Zariski, 1944).

Why Zariski cared: finite resolving system can replace an infinite one.

Theorem (Dobbs-Federer-Fontana, Heubo-Kwegna, Kuhlmann,...) \mathfrak{X} is a spectral space.

Proof: $\mathfrak{X} \simeq$ prime spectrum of the Kronecker function ring of F/D.

Why the name?

Nagata, 1962:

The name of Riemann is added because Zariski called this space 'Riemann manifold' in the case of a projective variety, though this is not a Riemann manifold in the usual sense in differential geometry. The writer believes that the motivation for the terminology came from the case of a curve. Anyway, the notion has nearly nothing to do with Riemann, hence the name 'Zariski space' is seemingly preferable. But, unfortunately, the term 'Zariski space' has been used in a different meaning [e.g., a Noetherian topological space for which every nonempty closed irreducible subset has a unique generic point]. Therefore we are proposing the name 'Zariski-Riemann space'.

A subset of $\mathfrak X$ is qcpt and open **iff** it is a finite union of sets of form

$$\mathcal{U}(x_1,\ldots,x_n)=\{V\in\mathfrak{X}:x_1,\ldots,x_n\in V\}.$$

Inverse topology: closed basis of qcpt open sets

...Also called the dual topology.

Patch topology: basis of qcpt opens and their complements

...compact, Hausdorff and zero-dimensional.

Every cpct Hausdorff zero-dim'l space having an isolated point arises as the patch space of a Zariski-Riemann space (even an affine scheme).

Sheaf structures

Intersection presheaf: $\mathcal{O}(U) := \bigcap_{V \in U} V$ (U open in \mathfrak{X}).

Zariski topology $\Rightarrow \mathcal{O}$ is a sheaf.

Inverse or patch topologies: must sheafify.

Zariski topology: Main virtue: compatible with morphisms into schemes.

Patch topology: Result is a "Pierce" sheaf: ringed Stone space with indecomposable stalks. $\mathcal{O}(\mathfrak{X})$ is a complicated ring with many idempotents. The geometry here is really algebra is disguise: The global sections functor is exact, hence cohomologically trivial.

Inverse topology: Ring of global sections can contain idempotents. Disadvantage: Stalks need not be valuation rings (but are a kind of pullback ring).

Affine subsets of \mathfrak{X}

 $\mathfrak{X} = \mathsf{Zariski}\text{-}\mathsf{Riemann}$ space of F/D with the $\mathsf{Zariski}$ topology.

"Non-degenerate" case: When is $Z \to \operatorname{Spec}(\bigcap_{V \in Z} V)$ an isomorphism?

I.e., which subspaces of $\mathfrak X$ are affine schemes?

Proposition.

 $Z \subseteq \mathfrak{X}$ is an affine scheme **iff**

Z is inverse closed and $A = \bigcap_{V \in Z} V$ is a Prüfer domain with q.f. F.

An integral domain A is a Prüfer domain if A_M is a valuation domain for each maximal ideal M of A.

So to detect when an intersection of valuation rings is Prüfer is the same as detecting when a subspace of $\mathfrak X$ is an affine scheme.

Prüfer domains

Prüfer domains are a fundamental object of study in non-Noetherian commutative ring theory and multiplicative ideal theory.

 \geq 100 characterizations (ideal-theoretic, module-theoretic, homological)

Examples:

- Finite intersection of valuation rings
- Ring of entire functions
- ullet The ring of integer-valued polynomials $\operatorname{Int}(\mathbb{Z})$
- Real holomorphy rings

Criterion for affiness

D =subring of the field F.

Recall: $A = \bigcap_{V \in \mathcal{Z}} V$ is a Prüfer domain **iff** $Z \subseteq$ affine scheme in \mathfrak{X}

Theorem. (O.-, 2014)
$$A = \bigcap_{V \in Z} V \text{ is Prüfer} \\ \text{with quotient field } F \\ \text{and torsion Picard group} \qquad \Longleftrightarrow \text{image of each } D\text{-morphism } Z \to \mathbb{P}^1_D$$
 is in a distinguished affine open subset of \mathbb{P}^1_D

 \mathbb{P}^1_D is covered by many affine open subsets.

What conditions guarantee $Z \to \mathbb{P}^1_D$ lands in one of them?

Applications

Three classical independent results about Prüfer intersections can now be reduced to prime avoidance arguments...

Corollary. (Nagata)
$$A = \bigcap_{V \in Z} V$$
 is Prüfer when Z is finite.

Proof.

Let $\phi:Z\to \mathbb{P}^1_D$ be a morphism.

Its image is finite.

Prime Avoidance $\Rightarrow \exists f \in D[T_0, T_1]$ not in any prime ideal in Im ϕ .

 $\{P \in \mathbb{P}^1_D : f \notin P\}$ is an **affine** open set containing Im ϕ .

So by the theorem, A is Prüfer.

(In fact, f can be chosen to be linear and this implies that A is Bézout.)

Corollary. (Dress, Gilmer, Loper, Roquette, Rush)

 $A = \bigcap_{V \in \mathcal{Z}} V$ is Prüfer when there exists a nonconstant monic polynomial $f \in A[T]$ that has no root in residue field of any $V \in \mathcal{Z}$.

<u>Proof</u>.

Let $\phi:Z\to \mathbb{P}^1_D$ be a morphism.

Let \overline{f} be the homogenization of f.

Then $\{P \in \mathbb{P}^1_D : \overline{f} \notin P\}$ is an **affine** open set containing Im ϕ .

So by the theorem, A is Prüfer with torsion Picard group.

Example: Use $f(X) = X^2 + 1$ to show the real holomorphy ring is Prüfer.

Corollary. (Roitman)

 $A = \bigcap_{V \in Z} V$ is Bézout when A contains a field of cardinality > |Z|.

Proof.

Let $\phi: Z \to \mathbb{P}^1_D$ be a morphism.

Use the fact that there are more units in A than valuation rings in Z to construct a homogeneous $f \in D[T_0, T_1]$ that is not contained in any prime ideal in the image of ϕ .

Then $\{P \in \mathbb{P}^1_D : f \notin P\}$ is an **affine** open set containing Im ϕ .

So by the theorem, A is Prüfer.

(In fact, f can be chosen to be linear, so A is a Bézout domain.)

Local uniformization

Corollary

D = quasi-excellent local Noetherian domain with quotient field F.

Z =valuation rings dominating D that **don't admit local uniformization**.

If $Z \neq \emptyset$, then $\bigcap_{V \in Z} V$ is a Prüfer domain with torsion Picard group.

So if nonempty, Z lies in an **affine** scheme in \mathfrak{X} .

Patch topology

Patch topology: qcpt opens and their complements as a basis

Conrad-Temkin, Favre-Jonsson, Finnocchiaro-Fontana-Loper, Huber-Knebusch, Knaf-Kuhlmann, Kuhlmann, O.-, Prestel-Schwartz,...

Patch density: useful for replacing a valuation with a "better" one that behaves the same on a finite set of data

Suppose Z is patch dense in $\mathfrak X$ and $V \in \mathfrak X$.

 $x_1, \ldots, x_n \in V$, $y_1, \ldots, y_m \in \mathfrak{M}_V \implies \exists W \in Z$ with same property

F.-V. Kuhlmann has proved a number of deep theorems for patch density in the space of valuations on a function field.

Patch density is useful for understanding the ideal theory of real holomorphy rings (O-, 2005).

Patch limit points

Theorem. (Finnocchiaro, Fontana, Loper, 2013)

V is a patch limit point of $Z \subseteq \mathfrak{X}$ **iff**

$$V = \{x \in F : \{V \in Z : x \in V\} \in \mathcal{F}\},\$$

where \mathcal{F} is a nonprincipal ultrafilter on Z.

Theorem (O-, 2014)

Suppose Spec(D) is a Noetherian space.

 $V \in \{\text{patch closure of } Z\}$ **iff** in every projective model X of F/D,

V maps to a generic point for a subset of the image of Z in X.

So patch limit points arise from generic points in the projective models.

Example: Accounting for all valuations

A non-constructive "construction" of all valuations in a function field...

Theorem (Kuhlmann, 2004)

F/k = function field.

The set of DVRs in \mathfrak{X} whose residue fields are finite over k is patch dense.

 \implies every valuation ring in $\mathfrak X$ is an ultrafilter limit of such DVRs.

These DVRs arise from prime ideals in the generic formal fiber of local rings of closed points in projective models of (Heinzer-Rotthaus-Sally, 1993).

"Taking completions" then "taking ultrafilter limits" give all valuations.

Application: Intersection representations

A subset Z of \mathfrak{X} represents a ring R if $R = \bigcap_{V \in Z} V$.

Theorem (O-, 2015)

Every patch closed rep. of a ring contains a minimal patch closed rep. isolated point \iff irredundant member of the representation

(⇒ consequences for uniqueness and existence of representations).

Theorem

(A, M) = integrally closed local domain with End(M) = A.

 \implies A is a val'n domain or \exists perfect dominating representation of A.

Corollary

A = completely integrally closed local domain

 \exists dominating rep'n with countably many limit points \Longrightarrow valuation ring.

More Prüfer criteria

Theorem

 $(D, \mathfrak{m}) = \text{local subring of } F \text{ that is not a field.}$

Z = set of dominating, rank 1 valuations rings.

 $|\{\text{limit points of }Z\}| < \aleph_0 \cdot |D/\mathfrak{m}| \implies \bigcap_{V \in \mathcal{Z}} V \text{ is a Prüfer domain.}$

Corollary.

$$|\{\text{limit points of }Z\}| = \text{finite} \implies \bigcap_{V \in Z} V \text{ is a Prüfer domain.}$$

Application: "Order holomorphy ring"

Let R = RLR, X = blow-up of Spec(R) at the maximal ideal.

 $V_x =$ order valuation ring of $\mathcal{O}_{X,x}$ (x = closed point)

 $\Longrightarrow \bigcap_x V_x$ is a Prüfer domain. (What information does it contain?)

Application: Quadratic Transforms

Theorem. (Heinzer, Loper, O-, Schoutens, Toenskoetter)

R = RLR of dimension > 1; $\{R_i\}$ = sequence of local quadratic transforms.

$$\implies \bigcup_i R_i = V \cap T,$$

 $T = \text{smallest Noetherian overring (it's a localization of one of the } R_i)$

V = unique patch limit point of the order valuation rings of the R_i 's.

Theorem. (Heinzer, O.-, Toenskoetter)

 \exists an explicit asymptotic description of V (in particular, rank V=2).

Application of Prüfer criterion:

V is a localization of the intersection of the order valuation rings.

Reason: The intersection of the order valuation rings is a Prüfer domain.

Application: Overrings of two-dim'l Noetherian domains

Suppose D is a two-dimensional Noetherian domain with q.f. F.

Goal: Describe the integrally closed rings $\bigcap_{V \in \mathcal{I}} V$ between D and F.

Special case: \exists morphism $Z \to \mathbb{P}^1_D$ with "small" fibers.

This is in keeping with the philosophy of understanding intersections of valuation rings when there are not "too many" of them.

Theorem. Suppose \exists morphism $Z \to \mathbb{P}^1_D$ with **Noetherian** fibers. Then

- (1) \exists unique strongly irredundant representation of $\mathcal{O}(Z) = \bigcap_{V \in Z} V$.
- (2) \exists local classification of the ring $\mathcal{O}(Z)$ (somewhat involved).

Note: This includes all integrally closed Noetherian domains.

Application to Rees valuations

Theorem (O-, Tartarone, 2013)

Suppose

D = two-dimensional regular local ring with regular parameter f.

D is equicharacteristic or has mixed characteristic with f a prime integer.

 $A = \text{integral closure of a finitely generated } D - \text{subalgebra of } D_f$.

Then distinct height one prime ideals of A lying over the maximal ideal of D are comaximal.

Thus A is "essentially one-fibered."

Question: If f is not a regular parameter, is there a bound on the number of height one primes of A lying over the maximal ideal of D and contained in the same maximal ideal of A? I.e., is each A essentially n-fibered?

"Yes" \Rightarrow nice consequences for not-necessarily-Noetherian overrings of D.

Thank you