Wild Ramification Kinks

Andrew Obus

University of Virginia

AMS Northeastern Sectional Meeting Special Session: Valuation theory and its applications New Brunswick, NJ, November 15, 2015 Joint with Stefan Wewers

- Suppose we are given a finite branched cover f: Y → X of smooth projective curves over a non-archimedean field.
- Can "analytify" to get a finite map of (formal, rigid, Berkovich) spaces $f^{an}: Y^{an} \to X^{an}$.
- Let $D \subseteq X^{an}$ be a rigid open disk.
- We can ask: When is $f^{-1}(D)$ also (geometrically) an open disk?

- Suppose we are given a finite branched cover f: Y → X of smooth projective curves over a non-archimedean field.
- Can "analytify" to get a finite map of (formal, rigid, Berkovich) spaces $f^{an}: Y^{an} \to X^{an}$.
- Let $D \subseteq X^{an}$ be a rigid open disk.
- We can ask: When is $f^{-1}(D)$ also (geometrically) an open disk?

- Suppose we are given a finite branched cover f: Y → X of smooth projective curves over a non-archimedean field.
- Can "analytify" to get a finite map of (formal, rigid, Berkovich) spaces $f^{an}: Y^{an} \to X^{an}$.
- Let $D \subseteq X^{an}$ be a rigid open disk.
- We can ask: When is $f^{-1}(D)$ also (geometrically) an open disk?

- Suppose we are given a finite branched cover f: Y → X of smooth projective curves over a non-archimedean field.
- Can "analytify" to get a finite map of (formal, rigid, Berkovich) spaces $f^{an}: Y^{an} \to X^{an}$.
- Let $D \subseteq X^{an}$ be a rigid open disk.
- We can ask: When is $f^{-1}(D)$ also (geometrically) an open disk?

- $f: \mathbb{P}^1 \to \mathbb{P}^1$ over \mathbb{Q}_p given by $z \mapsto z^m$, $p \nmid m$.
 - $f^{-1}(D(0,r))$ is an open disk for all r.
 - $f^{-1}(D(1,r))$ is not when r < 1.
 - Indeed, $f^{-1}(D)$ is an open disk iff D contains exactly one of 0 or ∞ .
- $f: \mathbb{P}^1 \to \mathbb{P}^1$ over K/\mathbb{Q}_p finite extension given by $z \mapsto z^p$
 - $f^{-1}(D(0,r))$ is an open disk for all r.
 - $f^{-1}(D(1,r))$ is not when $r \le p^{-\rho/(\rho-1)}$, but is when $r > p^{-\rho/(\rho-1)}$, even when r < 1.
 - In Berkovich terms, the "topological ramification locus" contains more than just the path from 0 to ∞.

- $f: \mathbb{P}^1 \to \mathbb{P}^1$ over \mathbb{Q}_p given by $z \mapsto z^m$, $p \nmid m$.
 - $f^{-1}(D(0,r))$ is an open disk for all r.
 - $f^{-1}(D(1,r))$ is not when r < 1.
 - Indeed, $f^{-1}(D)$ is an open disk iff D contains exactly one of 0 or ∞ .
- $f: \mathbb{P}^1 \to \mathbb{P}^1$ over K/\mathbb{Q}_p finite extension given by $z \mapsto z^p$
 - $f^{-1}(D(0,r))$ is an open disk for all r
 - $f^{-1}(D(1,r))$ is not when $r \le p^{-p/(p-1)}$, but is when $r > p^{-p/(p-1)}$, even when r < 1.
 - In Berkovich terms, the "topological ramification locus" contains more than just the path from 0 to ∞.

- $f: \mathbb{P}^1 \to \mathbb{P}^1$ over \mathbb{Q}_p given by $z \mapsto z^m$, $p \nmid m$.
 - $f^{-1}(D(0,r))$ is an open disk for all r.
 - $f^{-1}(D(1,r))$ is not when r < 1.
 - Indeed, $f^{-1}(D)$ is an open disk iff D contains exactly one of 0 or ∞ .
- $f: \mathbb{P}^1 \to \mathbb{P}^1$ over K/\mathbb{Q}_p finite extension given by $z \mapsto z^p$
 - $f^{-1}(D(0,r))$ is an open disk for all r
 - $f^{-1}(D(1,r))$ is not when $r \leq p^{-p/(p-1)}$, but is when $r > p^{-p/(p-1)}$ even when r < 1.
 - In Berkovich terms, the "topological ramification locus" contains more than just the path from 0 to ∞.

- $f: \mathbb{P}^1 \to \mathbb{P}^1$ over \mathbb{Q}_p given by $z \mapsto z^m$, $p \nmid m$.
 - $f^{-1}(D(0,r))$ is an open disk for all r.
 - $f^{-1}(D(1,r))$ is not when r < 1.
 - Indeed, $f^{-1}(D)$ is an open disk iff D contains exactly one of 0 or ∞ .
- $f: \mathbb{P}^1 \to \mathbb{P}^1$ over K/\mathbb{Q}_p finite extension given by $z \mapsto z^p$
 - $f^{-1}(D(0,r))$ is an open disk for all I
 - $f^{-1}(D(1,r))$ is not when $r \leq p^{-p/(p-1)}$, but is when $r > p^{-p/(p-1)}$ even when r < 1.
 - In Berkovich terms, the "topological ramification locus" contains more than just the path from 0 to ∞.

- $f: \mathbb{P}^1 \to \mathbb{P}^1$ over \mathbb{Q}_p given by $z \mapsto z^m$, $p \nmid m$.
 - $f^{-1}(D(0,r))$ is an open disk for all r.
 - $f^{-1}(D(1,r))$ is not when r < 1.
 - Indeed, $f^{-1}(D)$ is an open disk iff D contains exactly one of 0 or ∞ .
- $f: \mathbb{P}^1 \to \mathbb{P}^1$ over K/\mathbb{Q}_p finite extension given by $z \mapsto z^p$
 - $f^{-1}(D(0,r))$ is an open disk for all r.
 - $f^{-1}(D(1,r))$ is not when $r \le p^{-p/(p-1)}$, but is when $r > p^{-p/(p-1)}$, even when r < 1.
 - In Berkovich terms, the "topological ramification locus" contains more than just the path from 0 to ∞ .

- $f: \mathbb{P}^1 \to \mathbb{P}^1$ over \mathbb{Q}_p given by $z \mapsto z^m$, $p \nmid m$.
 - $f^{-1}(D(0,r))$ is an open disk for all r.
 - $f^{-1}(D(1,r))$ is not when r < 1.
 - Indeed, $f^{-1}(D)$ is an open disk iff D contains exactly one of 0 or ∞ .
- $f: \mathbb{P}^1 \to \mathbb{P}^1$ over K/\mathbb{Q}_p finite extension given by $z \mapsto z^p$
 - $f^{-1}(D(0,r))$ is an open disk for all r.
 - $f^{-1}(D(1,r))$ is not when $r \le p^{-p/(p-1)}$, but is when $r > p^{-p/(p-1)}$, even when r < 1.
 - In Berkovich terms, the "topological ramification locus" contains more than just the path from 0 to ∞ .

- $f: \mathbb{P}^1 \to \mathbb{P}^1$ over \mathbb{Q}_p given by $z \mapsto z^m$, $p \nmid m$.
 - $f^{-1}(D(0,r))$ is an open disk for all r.
 - $f^{-1}(D(1,r))$ is not when r < 1.
 - Indeed, $f^{-1}(D)$ is an open disk iff D contains exactly one of 0 or ∞ .
- $f: \mathbb{P}^1 \to \mathbb{P}^1$ over K/\mathbb{Q}_p finite extension given by $z \mapsto z^p$
 - $f^{-1}(D(0,r))$ is an open disk for all r.
 - $f^{-1}(D(1,r))$ is not when $r \le p^{-p/(p-1)}$, but is when $r > p^{-p/(p-1)}$, even when r < 1.
 - In Berkovich terms, the "topological ramification locus" contains more than just the path from 0 to ∞ .

- $f: \mathbb{P}^1 \to \mathbb{P}^1$ over \mathbb{Q}_p given by $z \mapsto z^m$, $p \nmid m$.
 - $f^{-1}(D(0,r))$ is an open disk for all r.
 - $f^{-1}(D(1,r))$ is not when r < 1.
 - Indeed, $f^{-1}(D)$ is an open disk iff D contains exactly one of 0 or ∞ .
- $f: \mathbb{P}^1 \to \mathbb{P}^1$ over K/\mathbb{Q}_p finite extension given by $z \mapsto z^p$
 - $f^{-1}(D(0,r))$ is an open disk for all r.
 - $f^{-1}(D(1,r))$ is not when $r \le p^{-p/(p-1)}$, but is when $r > p^{-p/(p-1)}$, even when r < 1.
 - In Berkovich terms, the "topological ramification locus" contains more than just the path from 0 to ∞ .

- Let F: Y → X × A be a flat family of G-Galois branched covers of X over a mixed-characteristic non-archimedean field K, parameterized by an affinoid A.
- Let $D \subseteq X^{an}$ be an open disk fix an origin and a metric.
- For r > 0, let $D(r) \subseteq D$ be the open disk of radius p^{-r} .

Theorem

Suppose there exists a sequence r_1, r_2, \ldots decreasing to 0 and $a_1, a_2, \ldots \in \mathcal{A}(\overline{K})$ such that $(\mathcal{F}|_{a_i})^{-1}(D(r_i))$ is an open disk for all i. Then there exists $a \in \mathcal{A}(\overline{K})$ such that $(\mathcal{F}|_a)^{-1}(D)$ is an open disk.

- Let F: Y → X × A be a flat family of G-Galois branched covers of X over a mixed-characteristic non-archimedean field K, parameterized by an affinoid A.
- Let $D \subseteq X^{an}$ be an open disk fix an origin and a metric.
- For r > 0, let $D(r) \subseteq D$ be the open disk of radius p^{-r} .

Theorem

Suppose there exists a sequence $r_1, r_2, ...$ decreasing to 0 and $a_1, a_2, ... \in \mathcal{A}(\overline{K})$ such that $(\mathcal{F}|_{a_i})^{-1}(D(r_i))$ is an open disk for all i. Then there exists $a \in \mathcal{A}(\overline{K})$ such that $(\mathcal{F}|_a)^{-1}(D)$ is an open disk.

- Let F: Y → X × A be a flat family of G-Galois branched covers of X over a mixed-characteristic non-archimedean field K, parameterized by an affinoid A.
- Let $D \subseteq X^{an}$ be an open disk fix an origin and a metric.
- For r > 0, let $D(r) \subseteq D$ be the open disk of radius p^{-r} .

Theorem

Suppose there exists a sequence $r_1, r_2, ...$ decreasing to 0 and $a_1, a_2, ... \in \mathcal{A}(\overline{K})$ such that $(\mathcal{F}|_{a_i})^{-1}(D(r_i))$ is an open disk for all i. Then there exists $a \in \mathcal{A}(\overline{K})$ such that $(\mathcal{F}|_a)^{-1}(D)$ is an open disk.

- Let F: Y → X × A be a flat family of G-Galois branched covers of X over a mixed-characteristic non-archimedean field K, parameterized by an affinoid A.
- Let $D \subseteq X^{an}$ be an open disk fix an origin and a metric.
- For r > 0, let $D(r) \subseteq D$ be the open disk of radius p^{-r} .

Theorem

Suppose there exists a sequence r_1, r_2, \ldots decreasing to 0 and $a_1, a_2, \ldots \in \mathcal{A}(\overline{K})$ such that $(\mathcal{F}|_{a_i})^{-1}(D(r_i))$ is an open disk for all i. Then there exists $a \in \mathcal{A}(\overline{K})$ such that $(\mathcal{F}|_a)^{-1}(D)$ is an open disk.

- Let F: Y → X × A be a flat family of G-Galois branched covers of X over a mixed-characteristic non-archimedean field K, parameterized by an affinoid A.
- Let $D \subseteq X^{an}$ be an open disk fix an origin and a metric.
- For r > 0, let $D(r) \subseteq D$ be the open disk of radius p^{-r} .

Theorem

Suppose there exists a sequence r_1, r_2, \ldots decreasing to 0 and $a_1, a_2, \ldots \in \mathcal{A}(\overline{K})$ such that $(\mathcal{F}|_{a_i})^{-1}(D(r_i))$ is an open disk for all i. Then there exists $a \in \mathcal{A}(\overline{K})$ such that $(\mathcal{F}|_a)^{-1}(D)$ is an open disk.

- The LLP asks: given a G-extension k[[z]]/k[[t]], when k is algebraically closed of characteristic p, does there exist a characteristic zero DVR R with residue field k, and a G-Galois extension R[[Z]]/R[[T]] lifting k[[z]]/k[[t]]?
- Can think of *R*[[*T*]] as the ring of functions on an open unit disk.
- Idea is to find a G-extension of $\mathbb{K} := \operatorname{Frac}(R[[T]])$ in which normalization of R[[T]] is R[[Z]] (another disk).
- New method of me and Wewers: Come up with an affinoid family of possible extensions. Show that, for a sequence r_1, r_2, \ldots decreasing to 0, one can find an extension in the family such that normalization of $\operatorname{Frac}(R[[p^{-r}T]])$ in the extension is a power series ring over R.
- This corresponds to the inverse image of D(r) being a disk. Then apply the theorem.

- The LLP asks: given a G-extension k[[z]]/k[[t]], when k is algebraically closed of characteristic p, does there exist a characteristic zero DVR R with residue field k, and a G-Galois extension R[[Z]]/R[[T]] lifting k[[z]]/k[[t]]?
- Can think of R[[T]] as the ring of functions on an open unit disk.
- Idea is to find a G-extension of $\mathbb{K} := \operatorname{Frac}(R[[T]])$ in which normalization of R[[T]] is R[[Z]] (another disk).
- New method of me and Wewers: Come up with an affinoid family of possible extensions. Show that, for a sequence r_1, r_2, \ldots decreasing to 0, one can find an extension in the family such that normalization of $\operatorname{Frac}(R[[p^{-r}T]])$ in the extension is a power series ring over R.
- This corresponds to the inverse image of D(r) being a disk. Then apply the theorem.

- The LLP asks: given a G-extension k[[z]]/k[[t]], when k is algebraically closed of characteristic p, does there exist a characteristic zero DVR R with residue field k, and a G-Galois extension R[[Z]]/R[[T]] lifting k[[z]]/k[[t]]?
- Can think of R[[T]] as the ring of functions on an open unit disk.
- Idea is to find a G-extension of $\mathbb{K} := \operatorname{Frac}(R[[T]])$ in which normalization of R[[T]] is R[[Z]] (another disk).
- New method of me and Wewers: Come up with an affinoid family of possible extensions. Show that, for a sequence r_1, r_2, \ldots decreasing to 0, one can find an extension in the family such that normalization of $Frac(R[[p^{-r}T]])$ in the extension is a power series ring over R.
- This corresponds to the inverse image of D(r) being a disk. Then apply the theorem.

- The LLP asks: given a G-extension k[[z]]/k[[t]], when k is algebraically closed of characteristic p, does there exist a characteristic zero DVR R with residue field k, and a G-Galois extension R[[Z]]/R[[T]] lifting k[[z]]/k[[t]]?
- Can think of R[[T]] as the ring of functions on an open unit disk.
- Idea is to find a G-extension of $\mathbb{K} := \operatorname{Frac}(R[[T]])$ in which normalization of R[[T]] is R[[Z]] (another disk).
- New method of me and Wewers: Come up with an affinoid family of possible extensions. Show that, for a sequence r_1, r_2, \ldots decreasing to 0, one can find an extension in the family such that normalization of $\operatorname{Frac}(R[[p^{-r}T]])$ in the extension is a power series ring over R.
- This corresponds to the inverse image of D(r) being a disk. Then apply the theorem.

- The LLP asks: given a G-extension k[[z]]/k[[t]], when k is algebraically closed of characteristic p, does there exist a characteristic zero DVR R with residue field k, and a G-Galois extension R[[Z]]/R[[T]] lifting k[[z]]/k[[t]]?
- Can think of R[[T]] as the ring of functions on an open unit disk.
- Idea is to find a G-extension of $\mathbb{K} := \operatorname{Frac}(R[[T]])$ in which normalization of R[[T]] is R[[Z]] (another disk).
- New method of me and Wewers: Come up with an affinoid family of possible extensions. Show that, for a sequence r_1, r_2, \ldots decreasing to 0, one can find an extension in the family such that normalization of $\operatorname{Frac}(R[[p^{-r}T]])$ in the extension is a power series ring over R.
- This corresponds to the inverse image of D(r) being a disk. Then apply the theorem.

- Simplify: Let $X = \mathbb{P}^1$, $G = \mathbb{Z}/p$. Base field K contains μ_p . Write K(X) = K(T). $f: Y \to X$ given by extracting a pth root of F.
- Our "families of covers" are more or less families of rational functions F as above (Kummer theory).
- Take $r \in (0, \infty)$. Let v_r be the "Gauss valuation" on K(T) with respect to D[r] (i.e., $v_r(T) = r$).
- Completion of K(T) at v_r is DVR with *imperfect* residue field k(t), with t the reduction of $p^{-r}T$.
- Want to measure "geometric" wild ramification of v_r in $K(Y) = K(T, \sqrt[p]{F})$ (comes from inseparable residue field extension).

- Simplify: Let $X = \mathbb{P}^1$, $G = \mathbb{Z}/p$. Base field K contains μ_p . Write K(X) = K(T). $f: Y \to X$ given by extracting a pth root of F.
- Our "families of covers" are more or less families of rational functions F as above (Kummer theory).
- Take $r \in (0, \infty)$. Let v_r be the "Gauss valuation" on K(T) with respect to D[r] (i.e., $v_r(T) = r$).
- Completion of K(T) at v_r is DVR with *imperfect* residue field k(t), with t the reduction of $p^{-r}T$.
- Want to measure "geometric" wild ramification of v_r in $K(Y) = K(T, \sqrt[p]{F})$ (comes from inseparable residue field extension).

- Simplify: Let $X = \mathbb{P}^1$, $G = \mathbb{Z}/p$. Base field K contains μ_p . Write K(X) = K(T). $f: Y \to X$ given by extracting a pth root of F.
- Our "families of covers" are more or less families of rational functions F as above (Kummer theory).
- Take $r \in (0, \infty)$. Let v_r be the "Gauss valuation" on K(T) with respect to D[r] (i.e., $v_r(T) = r$).
- Completion of K(T) at v_r is DVR with *imperfect* residue field k(t), with t the reduction of $p^{-r}T$.
- Want to measure "geometric" wild ramification of v_r in $K(Y) = K(T, \sqrt[p]{F})$ (comes from inseparable residue field extension).

- Simplify: Let $X = \mathbb{P}^1$, $G = \mathbb{Z}/p$. Base field K contains μ_p . Write K(X) = K(T). $f: Y \to X$ given by extracting a pth root of F.
- Our "families of covers" are more or less families of rational functions F as above (Kummer theory).
- Take $r \in (0, \infty)$. Let v_r be the "Gauss valuation" on K(T) with respect to D[r] (i.e., $v_r(T) = r$).
- Completion of K(T) at v_r is DVR with *imperfect* residue field k(t), with t the reduction of $p^{-r}T$.
- Want to measure "geometric" wild ramification of v_r in $K(Y) = K(T, \sqrt[p]{F})$ (comes from inseparable residue field extension).

- Simplify: Let $X = \mathbb{P}^1$, $G = \mathbb{Z}/p$. Base field K contains μ_p . Write K(X) = K(T). $f: Y \to X$ given by extracting a pth root of F.
- Our "families of covers" are more or less families of rational functions F as above (Kummer theory).
- Take $r \in (0, \infty)$. Let v_r be the "Gauss valuation" on K(T) with respect to D[r] (i.e., $v_r(T) = r$).
- Completion of K(T) at v_r is DVR with *imperfect* residue field k(t), with t the reduction of $p^{-r}T$.
- Want to measure "geometric" wild ramification of v_r in $K(Y) = K(T, \sqrt[p]{F})$ (comes from inseparable residue field extension).

Valuations, continued

- For each $F \in K(X)^{\times}/(K(X)^{\times})^p$, we can define a piecewise-linear, continuous function $\delta_F : [0,\infty) \to [0,\infty)$ using Kato's *depth Swan conductor* (this essentially measures the different of K(Y)/K(X) relative to V_r).
- KEY POINT: The inverse image of D(r) is a disk iff the right-slope of δ_F at r is one less than the number of branch points of f inside D(r).
- So we can detect disks using the kinks in the function δ_F (hence the title).

Valuations, continued

- For each $F \in K(X)^{\times}/(K(X)^{\times})^p$, we can define a piecewise-linear, continuous function $\delta_F : [0, \infty) \to [0, \infty)$ using Kato's *depth Swan conductor* (this essentially measures the different of K(Y)/K(X) relative to v_r).
- KEY POINT: The inverse image of D(r) is a disk iff the right-slope of δ_F at r is one less than the number of branch points of f inside D(r).
- So we can detect disks using the kinks in the function δ_F (hence the title).

Valuations, continued

- For each $F \in K(X)^{\times}/(K(X)^{\times})^p$, we can define a piecewise-linear, continuous function $\delta_F : [0, \infty) \to [0, \infty)$ using Kato's *depth Swan conductor* (this essentially measures the different of K(Y)/K(X) relative to V_F).
- KEY POINT: The inverse image of D(r) is a disk iff the right-slope of δ_F at r is one less than the number of branch points of f inside D(r).
- So we can detect disks using the kinks in the function δ_F (hence the title).

- The function $\delta_F(r)$ can be read off directly from F so long as the normalized residue of $F-1 \pmod{v_r}$ is not a pth power. Call such an F in "standard form."
- Let A be the affinoid parameterizing our covers. For $a \in A$, $f_a: Y_a \to X$ is the corresponding cover.
- First step: Find a family of rational functions F_a for $a \in A$ such that F_a is a Kummer representative for f_a in standard form (might require finite cover of A).
- Thus δ_{F_a} can be read off easily.

- The function $\delta_F(r)$ can be read off directly from F so long as the normalized residue of $F-1 \pmod{v_r}$ is not a pth power. Call such an F in "standard form."
- Let A be the affinoid parameterizing our covers. For $a \in A$, $f_a: Y_a \to X$ is the corresponding cover.
- First step: Find a family of rational functions F_a for $a \in A$ such that F_a is a Kummer representative for f_a in standard form (might require finite cover of A).
- Thus δ_{F_a} can be read off easily.

- The function $\delta_F(r)$ can be read off directly from F so long as the normalized residue of $F-1 \pmod{v_r}$ is not a pth power. Call such an F in "standard form."
- Let A be the affinoid parameterizing our covers. For $a \in A$, $f_a: Y_a \to X$ is the corresponding cover.
- First step: Find a family of rational functions F_a for $a \in \mathcal{A}$ such that F_a is a Kummer representative for f_a in standard form (might require finite cover of \mathcal{A}).
- Thus δ_{F_a} can be read off easily.

- The function $\delta_F(r)$ can be read off directly from F so long as the normalized residue of $F-1 \pmod{v_r}$ is not a pth power. Call such an F in "standard form."
- Let A be the affinoid parameterizing our covers. For $a \in A$, $f_a: Y_a \to X$ is the corresponding cover.
- First step: Find a family of rational functions F_a for $a \in \mathcal{A}$ such that F_a is a Kummer representative for f_a in standard form (might require finite cover of \mathcal{A}).
- Thus δ_{F_a} can be read off easily.

- Fix R > 0 such that no branch point of any f_a lies in $D \setminus D(r)$. Let m be the total number of branch points in D(r) of one (equiv. all) f_a .
- Let r_a be the supremum over all $r \in [0, R]$ such that the right-slope of δ_{F_a} at r is not equal to m-1. Then r_a (as a function of a) can be expressed as the valuation of an analytic function on \mathcal{A} (really need a finite cover here again but r_a descends to \mathcal{A} as a function).
- By maximum principle, r_a achieves its minimum on A.
- By input to the theorem, this minimum must be 0! So $r_b = 0$ for some $b \in A$.
- Then $f_b^{-1}(D)$ is an open disk.

- Fix R > 0 such that no branch point of any f_a lies in $D \setminus D(r)$. Let m be the total number of branch points in D(r) of one (equiv. all) f_a .
- Let r_a be the supremum over all $r \in [0, R]$ such that the right-slope of δ_{F_a} at r is not equal to m-1. Then r_a (as a function of a) can be expressed as the valuation of an analytic function on $\mathcal A$ (really need a finite cover here again but r_a descends to $\mathcal A$ as a function).
- By maximum principle, r_a achieves its minimum on A.
- By input to the theorem, this minimum must be 0! So $r_b = 0$ for some $b \in A$.
- Then $f_b^{-1}(D)$ is an open disk.

- Fix R > 0 such that no branch point of any f_a lies in $D \setminus D(r)$. Let m be the total number of branch points in D(r) of one (equiv. all) f_a .
- Let r_a be the supremum over all $r \in [0, R]$ such that the right-slope of δ_{F_a} at r is not equal to m-1. Then r_a (as a function of a) can be expressed as the valuation of an analytic function on $\mathcal A$ (really need a finite cover here again but r_a descends to $\mathcal A$ as a function).
- By maximum principle, r_a achieves its minimum on A.
- By input to the theorem, this minimum must be 0! So $r_b = 0$ for some $b \in A$.
- Then $f_b^{-1}(D)$ is an open disk.

- Fix R > 0 such that no branch point of any f_a lies in $D \setminus D(r)$. Let m be the total number of branch points in D(r) of one (equiv. all) f_a .
- Let r_a be the supremum over all $r \in [0, R]$ such that the right-slope of δ_{F_a} at r is not equal to m-1. Then r_a (as a function of a) can be expressed as the valuation of an analytic function on $\mathcal A$ (really need a finite cover here again but r_a descends to $\mathcal A$ as a function).
- By maximum principle, r_a achieves its minimum on A.
- By input to the theorem, this minimum must be 0! So $r_b = 0$ for some $b \in A$.
- Then $f_b^{-1}(D)$ is an open disk.

- Fix R > 0 such that no branch point of any f_a lies in $D \setminus D(r)$. Let m be the total number of branch points in D(r) of one (equiv. all) f_a .
- Let r_a be the supremum over all $r \in [0, R]$ such that the right-slope of δ_{F_a} at r is not equal to m-1. Then r_a (as a function of a) can be expressed as the valuation of an analytic function on $\mathcal A$ (really need a finite cover here again but r_a descends to $\mathcal A$ as a function).
- By maximum principle, r_a achieves its minimum on A.
- By input to the theorem, this minimum must be 0! So $r_b = 0$ for some $b \in A$.
- Then $f_b^{-1}(D)$ is an open disk.

Thank you!