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Setup

Suppose we are given a finite branched cover f : Y → X of
smooth projective curves over a non-archimedean field.
Can “analytify” to get a finite map of (formal, rigid, Berkovich)
spaces f an : Y an → X an.
Let D ⊆ X an be a rigid open disk.
We can ask: When is f−1(D) also (geometrically) an open disk?
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Examples

f : P1 → P1 over Qp given by z 7→ zm, p - m.
f−1(D(0, r)) is an open disk for all r .
f−1(D(1, r)) is not when r < 1.
Indeed, f−1(D) is an open disk iff D contains exactly one of 0 or∞.

f : P1 → P1 over K/Qp finite extension given by z 7→ zp

f−1(D(0, r)) is an open disk for all r .
f−1(D(1, r)) is not when r ≤ p−p/(p−1), but is when r > p−p/(p−1),
even when r < 1.
In Berkovich terms, the “topological ramification locus” contains
more than just the path from 0 to∞.
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(A simplified version of) the problem

Let F : Y → X ×A be a flat family of G-Galois branched covers of
X over a mixed-characteristic non-archimedean field K ,
parameterized by an affinoid A.
Let D ⊆ X an be an open disk — fix an origin and a metric.
For r > 0, let D(r) ⊆ D be the open disk of radius p−r .

Theorem
Suppose there exists a sequence r1, r2, . . . decreasing to 0 and
a1,a2, . . . ∈ A(K ) such that (F|ai )

−1(D(ri)) is an open disk for all i .
Then there exists a ∈ A(K ) such that (F|a)−1(D) is an open disk.

The theorem is both more/less general than this.
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Motivation: the local lifting problem (LLP)

The LLP asks: given a G-extension k [[z]]/k [[t ]], when k is
algebraically closed of characteristic p, does there exist a
characteristic zero DVR R with residue field k , and a G-Galois
extension R[[Z ]]/R[[T ]] lifting k [[z]]/k [[t ]]?
Can think of R[[T ]] as the ring of functions on an open unit disk.
Idea is to find a G-extension of K := Frac(R[[T ]]) in which
normalization of R[[T ]] is R[[Z ]] (another disk).
New method of me and Wewers: Come up with an affinoid family
of possible extensions. Show that, for a sequence r1, r2, . . .
decreasing to 0, one can find an extension in the family such that
normalization of Frac(R[[p−r T ]]) in the extension is a power series
ring over R.
This corresponds to the inverse image of D(r) being a disk. Then
apply the theorem.
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Why valuations?

Simplify: Let X = P1, G = Z/p. Base field K contains µp. Write
K (X ) = K (T ). f : Y → X given by extracting a pth root of F .
Our “families of covers” are more or less families of rational
functions F as above (Kummer theory).
Take r ∈ (0,∞). Let vr be the “Gauss valuation” on K (T ) with
respect to D[r ] (i.e., vr (T ) = r ).
Completion of K (T ) at vr is DVR with imperfect residue field k(t),
with t the reduction of p−r T .
Want to measure “geometric” wild ramification of vr in
K (Y ) = K (T , p

√
F ) (comes from inseparable residue field

extension).
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Valuations, continued

For each F ∈ K (X )×/(K (X )×)p, we can define a piecewise-linear,
continuous function δF : [0,∞)→ [0,∞) using Kato’s depth Swan
conductor (this essentially measures the different of K (Y )/K (X )
relative to vr ).
KEY POINT: The inverse image of D(r) is a disk iff the right-slope
of δF at r is one less than the number of branch points of f inside
D(r).
So we can detect disks using the kinks in the function δF (hence
the title).
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Sketch of the proof of the theorem

The function δF (r) can be read off directly from F so long as the
normalized residue of F − 1 (mod vr ) is not a pth power. Call such
an F in “standard form.”
Let A be the affinoid parameterizing our covers. For a ∈ A,
fa : Ya → X is the corresponding cover.
First step: Find a family of rational functions Fa for a ∈ A such that
Fa is a Kummer representative for fa in standard form (might
require finite cover of A).
Thus δFa can be read off easily.
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Sketch of the proof of the theorem (continued)

Fix R > 0 such that no branch point of any fa lies in D\D(r). Let m
be the total number of branch points in D(r) of one (equiv. all) fa.
Let ra be the supremum over all r ∈ [0,R] such that the right-slope
of δFa at r is not equal to m− 1. Then ra (as a function of a) can be
expressed as the valuation of an analytic function on A (really
need a finite cover here again — but ra descends to A as a
function).
By maximum principle, ra achieves its minimum on A.
By input to the theorem, this minimum must be 0! So rb = 0 for
some b ∈ A.
Then f−1

b (D) is an open disk.
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Thank you!
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