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Big question

Problem

To what extend
geometry is determined by arithmetic?

linear structures = affine geometry — the same over any field;
hence look at orthogonality, angles, lengths. . .
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Big question example: Pythagoras theorem

a

c
b a2 + b2 = c2

For this to work, one needs an arithmetic property:∑
� = �
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Notation

R domain 1/2 ∈ R (resp. K field, charK 6= 2);
M finitely generated projective R-module;
ξ : M ×M → R symmetric, bilinear and non-degenerate

i.e. ξ̂ : M ∼−→ HomR(M,R),
(
ξ̂(a)

)
(b) := ξ(a, b);

ξ defines orthogonal geometry on M.
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Over the reals

Standard dot product determines:
lengths

‖v‖ =
√
v • v ;

angels
cosα =

v • w
‖v‖ · ‖w‖

;

in particular orthogonality

v ⊥ w ⇐⇒ v • w = 0.
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Over an arbitrary field

orthogonality is well defined

v ⊥ w ⇐⇒ ξ(v ,w) = 0;

“magnitude” of an element ∼ valuation.
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Back to our big question

arithmetic

valuations
quadratic
forms

?
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Let’s be more specific

Problems:
P1: Compare two quadratic (orthogonal) spaces.
P2: Describe all possible orthogonal geometries.
P3: Compare classes of orthogonal geometries over two

distinct rings.
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P1: Compare quadratic spaces

Isometry (V , ξ) ∼= (W , ζ):

t : V ∼−→W , ξ(u, v) = ζ(tu, tv);

Similarity (V , ξ) ∼ (W , ζ):

(V , ξ) ⊥ hyperbolic ∼= (W , ζ) ⊥ hyperbolic;
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Isometry and valuations

Weak Hasse principle:

K global field, XK set of all primes:

(V , ξ) ∼=
K
(W , ζ) ⇐⇒ ∀p ∈ XK : (V , ξ)⊗ Kp

∼=
Kp

(W , ζ)⊗ Kp

Weak Witt theorem:

K function field over a real closed field k,
γK real points of K , trivial on k

(V , ξ) ∼=
K
(W , ζ) ⇐⇒ ∀p ∈ γK : (V , ξ)⊗ Kp

∼=
Kp

(W , ζ)⊗ Kp

9/43



Similarity and valuations

Strong Hasse principle:

K global field, XK set of all primes:

(V , ξ) ∼
K
(W , ζ) ⇐⇒ ∀p ∈ XK : (V , ξ)⊗ Kp ∼

Kp

(W , ζ)⊗ Kp

Witt theorem:

K function field over a real closed field k,
γK real points of K , trivial on k

(V , ξ) ∼
K
(W , ζ) ⇐⇒ ∀p ∈ γK : (V , ξ)⊗ Kp ∼

Kp

(W , ζ)⊗ Kp

for dim ξ, dim ζ ≥ 3.
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P1: Compare quadratic spaces

In both cases we used valuations to compare quadratic spaces.
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P2: Describe all admissible orthogonal geometries

Witt ring

Set of similarity classes of non-degenarte bilinear R-modules with
⊥ orthogonal sum
⊗ tensor product

is a ring called Witt ring of R , denoted WR .

Witt functor

R 7→WR is a covariant endofunctor on the category of
commutative rings.
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P3: Compare classes of orthogonal geometries

Find criteria for fields/rings for Witt functor to take equal values.
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Back to our big question

arithmetic

valuations
quadratic
forms

?
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This is too general!

In full generality they do not match!

C((x)) F5

arithmetics very different
valuations lots trivial only
Witt rings WC((x)) ∼= WF5
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Narrow a class of fields

Hasse principles and Witt theorems suggest to concentrate on
certain classes of fields: global fields, real function fields.
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Perlis, Szymiczek, Conner, Litherland; 1994

Theorem

K, L global fields, charK , char L 6= 2,
XK , XL sets of all primes of K, L.

Then WK ∼= WL iff there are:

T : XK
∼−→ XL, t : K/� ∼−→ L/�

such that

(a, b)p = (ta, tb)Tp for all a, b ∈ K/� and p ∈ XK
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Real function fields

Theorem (K., 2002)

k, k′ real closed fields,
K , L function fields (over k, k′),
γK , γL sets (curves) of real points.

Then WK ∼= WL iff there are:
T : γK \ {finite set} homeo−−−−→ γL \ {finite set},
t : K/� ∼−→ L/�

such that(a, b
Kp

)
= 1 ⇐⇒

( ta, tb
LTp

)
= 1 for all a, b and p
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Here it is

In both cases Witt equivalence depends on
matching valuation on K and L

but crudely.
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Zoom in: real function fields

Proposition (K., 2002)

At every point p where T is defined, we have

ordp a ≡ ordTp ta (mod 2).

Proposition (K., 2009)

If T is defined on the whole γK , then there is ϕ : WK ∼−→WL s.t.

ϕ(WRK ) = WRL,

where RK ,RL are rings of regular functions.
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Zoom in: real function fields

Proposition (K., 2009)

If T is defined on the whole γK , then there is ϕ : WK ∼−→WL s.t.

ϕ(WRK ) = WRL,

where RK ,RL are rings of regular functions.

WK
ϕ
� WL

WRK

f

f

...............
ϕ|WRK

� WRL

f

f
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Zoom in: global fields

K , L global fields (charK , char L 6= 2);
(t,T ) as above.

Definition

A point p ∈ X is
tame if ordp a ≡ ordTp ta for every a ∈ K/�,
wild otherwise.
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Zoom in: global fields

Theorem (Czogała, 2001)

K, L global fields (charK , char L 6= 2);
OK , OL integral closures of either Z or Fq[x ];
(t,T ) as above.

It every point of K is tame w.r.t (t,T ), then
there is ϕ : WK ∼−→WL s.t.

ϕ(WOK ) = WOL.
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Back to our big question

arithmetic

valuations
quadratic
forms

?

Tame points — valuations and quadratic forms “cooperate”,
Wild points — things get. . . ehm. . . “wild”.
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Meta-theoretic level

All possible Witt equivalences of a given field K ,
“null object” = all self-equivalences (i.e. Witt equivalences
of K with itself).

K -admissible sets of wild points in XK ,
“null objects” = sets of wild points of self-equivalences.
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Wild set

Definition

A finite set W ⊂ XK is called wild , if it is a set of wild points of
some self-equivalence of K .
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Wild set

Definition

A finite set W ⊂ XK is called wild , if it is a set of wild points of
some self-equivalence of K .

Explicitly, W is wild if there are:
T : XK

∼−→ XL;
t : Aut(K/�),
cp ∈ K/� for every p ∈ W

such that

(a, b)p = (ta, tb)Tp, for all a, b ∈ K/�, p ∈ XK

and

ordp cp ≡ 1+ ordTp tcp (mod 2), for all p ∈ W.
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��Big Small question: How do wild sets look like?

Small question

Describe wild sets/points in global fields:
number fields;
function fields.
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Rationals and Gaussian rationals

Theorem (Somodi, 2006)

A finite set W ⊂ XQ is wild iff for every (p) ∈ W,
either p = 2 or p ≡ 1 (mod 4).

Theorem (Somodi, 2008)

Every finite set W ⊂ XQ(i) is wild.
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General number fields: set-up

[K : Q] <∞;
K has a unique dyadic prime d;
d ∈ 2CK

rk2 Ck = rk2 C+
K

(C+
K narrow ideal class group, i.e. fractional ideals modulo totally positive ones).
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General number fields: sufficient condition

Theorem (Czogała, Rothkegel; 2014)

K number field as above,
p1, . . . , pn primes of K;
pi ∈ 2CK for every i ;
−1 is a local square at every pi

Then W := {p1, . . . , pn} is a wild set.
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Function fields: set-up

K global function field;
k = Fq full field of constants (2 - q);
XK set of all primes of K
= smooth, irreducible complete curve over k;
(t,T ) always denotes some self-equivalence of K , i.e.

t ∈ Aut(K/�), T : X ∼−→ X , (·, ·)p = (t·, t·)Tp
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Wild singletons

Theorem

Let p ∈ XK . The following conditions are equivalent:
p ∈ 2 · PicK (p is even);
p is a unique wild point of some self-equivalence of K.
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Special case: rational functions

If K = k(x), then deg : PicK ∼−→ Z, hence:

Observation

Over k(x), the following conditions are equivalent:
{p} is a wild set;
p is an even point;
deg p ∈ 2Z.
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Special case: rational functions

If K = k(x), then deg : PicK ∼−→ Z, hence:

Observation

Over k(x), the following conditions are equivalent:

{p} wild set ⇐⇒ p ∈ 2PicK ⇐⇒ deg p ∈ 2Z.

In general, deg : PicK � Z, thus:

Observation

Every even point has an even degree.
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Example

The opposite implication fails in general:
k = F3,
X elliptic curve y2 − x3 + x = 0;
X has:

6 point of degree 2, none of them even,
12 points of degree 4, none of them even.
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Yet another criterion for divisibility in Picard group

Proposition

X smooth (hyper)elliptic curve y2 − f (x) = 0,
deg f /∈ 2Z,
K associated function field,
p ∈ X, deg p ∈ 2Z.

Then p is even iff there is λ ∈ K s.t.

NormK/k(x) p
Div k(x)→k(x)∗7−−−−−−−−−−−→ NormK/k(x) λ
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Even points do exist

Proposition

X smooth (hyper)elliptic curve y2 − f (x) = 0,
f monic, deg f /∈ 2Z,
K associated function field.

Then there are infinitely many even points (wild singletons) of K.
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Bigger wild sets: stitching wild sets together

Theorem

K global function field;
XK associated smooth and complete curve;
W1 :=W(T1, t1) a wild set of some self-equivalence (T1, t1);
W2 := T1

(
W(T2, t2)

)
an image of a wild set of T2, t2).

Then W1 ∪W2 is a wild set.

(The associated self-equivalence being (T2 ◦ T1, t2 ◦ t1).)
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Bigger wild sets

Theorem

K global function field;
XK associated smooth curve;
p1, . . . , pn ∈ X even points.

Then W := {p1, . . . , pn} is a wild set.
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These are not the only ones!

k = F5;
X elliptic curve y2 + x3 + x + 2 = 0;
p, q ∈ X , p ∼ (1, 1), q ∼ (1, 4).

Then
1 neither p nor q is even,
2 but W := {p, q} is a wild set!

Observation

There are irreducible wild sets, which are not singletons!
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Necessary condition (NC)

Theorem

K global function field;
XK associated smooth curve;
W ⊂ X a finite wild set.

Then
|W| ≥ 2 · rk2

〈
p1 + 2PicK , . . . , pn + 2PicK

〉
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NC is sufficient for pairs

Proposition

K global function field;
XK associated smooth and complete curve;
p, q ∈ XK ;
rk2〈p+ 2PicK , q+ 2PicK 〉 = 1.

Then {p, q} is a wild set.
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Further examples

NC is sufficient for:
triples (providing that −1 is a local square);
sets W ⊂ XK s.t. rk2〈W + 2PicK

〉
≤ 1;

sets displaying certain kind of symmetry.

Conjecture

NC is a necessary and sufficient condition for wildness.
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. . . and beyond

[Sharif; 2013]

Divisibility in Picard groups of curves over over local fields.

[Czogała, Rothkegel, Sładek; 2016]

Wild sets w.r.t. higher degree forms in number fields.

[Marshall, Gładki; 2017]

Witt equivalence of function fields over global field.
Tame/wild points play a crucial role, again.
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Thank you for your
attention
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