WILD AND EVEN POINTS IN GLOBAL FIELDS AND BEYOND

Przemysław Koprowski

joint work with:

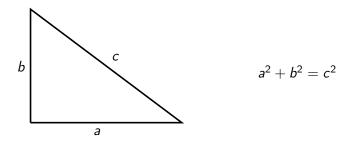
Alfred Czogała, Beata Rothkegel

Colloquiumfest, 2017

PROBLEM

To what extend geometry is determined by arithmetic?

BIG QUESTION EXAMPLE: PYTHAGORAS THEOREM



For this to work, one needs an arithmetic property:

$$\sum \square = \square$$

PROBLEM

To what extend geometry is determined by arithmetic?

- linear structures = affine geometry the same over any field;
- hence look at orthogonality, angles, lengths. . .

NOTATION

- R domain $1/2 \in R$ (resp. K field, char $K \neq 2$);
- M finitely generated projective R-module;
- $\xi: M \times M \rightarrow R$ symmetric, bilinear and non-degenerate

i.e.
$$\hat{\xi}: M \xrightarrow{\sim} \operatorname{Hom}_R(M, R), \qquad (\hat{\xi}(a))(b) := \xi(a, b);$$

• ξ defines orthogonal geometry on M.

OVER THE REALS

Standard dot product determines:

lengths

$$||v|| = \sqrt{v \bullet v};$$

angels

$$\cos \alpha = \frac{\mathbf{v} \bullet \mathbf{w}}{\|\mathbf{v}\| \cdot \|\mathbf{w}\|};$$

in particular orthogonality

$$v \perp w \iff v \bullet w = 0.$$

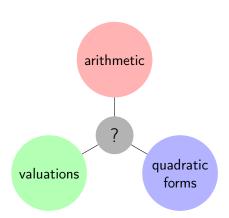
OVER AN ARBITRARY FIELD

orthogonality is well defined

$$v \perp w \iff \xi(v, w) = 0;$$

 \blacksquare "magnitude" of an element \sim valuation.

BACK TO OUR BIG QUESTION



LET'S BE MORE SPECIFIC

Problems:

P1: Compare two quadratic (orthogonal) spaces.

P2: Describe all possible orthogonal geometries.

P3: Compare classes of orthogonal geometries over two distinct rings.

P1: Compare quadratic spaces

ISOMETRY
$$(V,\xi) \cong (W,\zeta)$$
:

$$t: V \xrightarrow{\sim} W, \qquad \xi(u,v) = \zeta(tu,tv);$$

Similarity $(V,\xi) \sim (W,\zeta)$:

$$(V,\xi)$$
 \perp hyperbolic \cong (W,ζ) \perp hyperbolic;

WEAK HASSE PRINCIPLE:

K global field, X_K set of all primes:

$$(V,\xi) \underset{K}{\cong} (W,\zeta) \iff \forall \mathfrak{p} \in X_K : (V,\xi) \otimes K_{\mathfrak{p}} \underset{K_{\mathfrak{p}}}{\cong} (W,\zeta) \otimes K_{\mathfrak{p}}$$

WEAK WITT THEOREM:

- K function field over a real closed field k,
- lacksquare $\gamma_{\mathcal{K}}$ real points of \mathcal{K} , trivial on \Bbbk

$$(V,\xi) \stackrel{\cong}{\underset{\kappa}{\in}} (W,\zeta) \iff \forall \mathfrak{p} \in \gamma_{\kappa}: (V,\xi) \otimes K_{\mathfrak{p}} \stackrel{\cong}{\underset{\kappa_{\mathfrak{p}}}{\cong}} (W,\zeta) \otimes K_{\mathfrak{p}}$$

STRONG HASSE PRINCIPLE:

K global field, X_K set of all primes:

$$(V,\xi) \underset{K}{\sim} (W,\zeta) \iff \forall \mathfrak{p} \in X_K : (V,\xi) \otimes K_{\mathfrak{p}} \underset{K_{\mathfrak{p}}}{\sim} (W,\zeta) \otimes K_{\mathfrak{p}}$$

WITT THEOREM:

- K function field over a real closed field k,
- lacksquare γ_K real points of K, trivial on \Bbbk

$$(V,\xi) \underset{\mathcal{K}}{\sim} (W,\zeta) \iff \forall \mathfrak{p} \in \gamma_{\mathcal{K}} : (V,\xi) \otimes \mathcal{K}_{\mathfrak{p}} \underset{\mathcal{K}_{\mathfrak{p}}}{\sim} (W,\zeta) \otimes \mathcal{K}_{\mathfrak{p}}$$

for dim ξ , dim $\zeta \geq 3$.

P1: Compare quadratic spaces

In both cases we used valuations to compare quadratic spaces.

P2: Describe all admissible orthogonal geometries

WITT RING

Set of similarity classes of non-degenarte bilinear R-modules with

- \perp orthogonal sum
- ⊗ tensor product

is a ring called *Witt ring* of R, denoted WR.

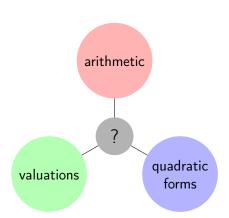
WITT FUNCTOR

 $R \mapsto WR$ is a covariant endofunctor on the category of commutative rings.

P3: Compare classes of orthogonal geometries

Find criteria for fields/rings for Witt functor to take equal values.

BACK TO OUR BIG QUESTION



This is too general!

In full generality they do not match!

	$\mathbb{C}((x))$	\mathbb{F}_5
arithmetics	very different	
valuations	lots	trivial only
Witt rings	$W\mathbb{C}((x))\cong W\mathbb{F}_5$	

NARROW A CLASS OF FIELDS

Hasse principles and Witt theorems suggest to concentrate on certain classes of fields: global fields, real function fields.

THEOREM

- K, L global fields, char K, char $L \neq 2$,
- \blacksquare X_K , X_L sets of all primes of K, L.

Then $WK \cong WL$ iff there are:

$$T: X_K \xrightarrow{\sim} X_L, \qquad t: K/\square \xrightarrow{\sim} L/\square$$

such that

$$(a,b)_{\mathfrak{p}}=(ta,tb)_{T\mathfrak{p}}\qquad ext{for all } a,b\in {}^{K}\!/\!\square ext{ and } \mathfrak{p}\in X_{K}$$

THEOREM (K., 2002)

- \blacksquare k, k' real closed fields,
- K, L function fields (over \mathbb{k} , \mathbb{k}'),
- γ_K , γ_L sets (curves) of real points.

Then $WK \cong WL$ iff there are:

- $T: \gamma_K \setminus \{\text{finite set}\} \xrightarrow{\text{homeo}} \gamma_L \setminus \{\text{finite set}\},$
- $t: K/\square \xrightarrow{\sim} L/\square$

such that

$$\left(rac{\mathsf{a},\mathsf{b}}{\mathcal{K}_\mathfrak{p}}
ight) = 1 \iff \left(rac{\mathsf{ta},\mathsf{tb}}{\mathsf{L}_{\mathcal{T}\mathfrak{p}}}
ight) = 1 \quad \textit{for all } \mathsf{a},\mathsf{b} \; \textit{and} \; \mathfrak{p}$$

HERE IT IS

In both cases Witt equivalence depends on matching valuation on ${\cal K}$ and ${\cal L}$ but crudely.

HERE IT IS

In both cases Witt equivalence depends on matching valuation on K and L but crudely.

Proposition (K., 2002)

At every point p where T is defined, we have

$$\operatorname{ord}_{\mathfrak{p}} a \equiv \operatorname{ord}_{T\mathfrak{p}} ta \pmod{2}.$$

Proposition (K., 2009)

If T is defined on the whole γ_K , then there is $\varphi: WK \xrightarrow{\sim} WL$ s.t.

$$\varphi(WR_K)=WR_L,$$

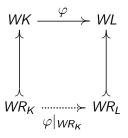
where R_K , R_L are rings of regular functions.

Proposition (K., 2009)

If T is defined on the whole γ_K , then there is $\varphi : WK \xrightarrow{\sim} WL$ s.t.

$$\varphi(WR_K)=WR_L,$$

where R_K , R_L are rings of regular functions.



ZOOM IN: GLOBAL FIELDS

- K, L global fields (char K, char $L \neq 2$);
- \blacksquare (t, T) as above.

DEFINITION

A point $\mathfrak{p} \in X$ is

TAME if $\operatorname{ord}_{\mathfrak{p}} a \equiv \operatorname{ord}_{T\mathfrak{p}} ta$ for every $a \in {}^{K}/\square$, WILD otherwise.

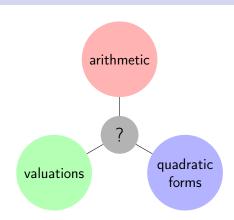
THEOREM (CZOGAŁA, 2001)

- K, L global fields (char K, char $L \neq 2$);
- lacksquare \mathcal{O}_K , \mathcal{O}_L integral closures of either \mathbb{Z} or $\mathbb{F}_q[x]$;
- \bullet (t, T) as above.

It every point of K is tame w.r.t (t, T), then there is $\varphi : WK \xrightarrow{\sim} WL$ s.t.

$$\varphi(W\mathcal{O}_K)=W\mathcal{O}_L.$$

BACK TO OUR BIG QUESTION



TAME POINTS — valuations and quadratic forms "cooperate", WILD POINTS — things get... ehm... "wild".

META-THEORETIC LEVEL

- All possible Witt equivalences of a given field K,
- "null object" = all self-equivalences (i.e. Witt equivalences of K with itself).
- K-admissible sets of wild points in X_K ,
- "null objects" = sets of wild points of self-equivalences.

WILD SET

DEFINITION

A finite set $W \subset X_K$ is called *wild*, if it is a set of wild points of some self-equivalence of K.

DEFINITION

A finite set $W \subset X_K$ is called *wild*, if it is a set of wild points of some self-equivalence of K.

Explicitly, ${\cal W}$ is wild if there are:

- $T: X_K \xrightarrow{\sim} X_L;$
- $t : Aut(K/\square),$
- lacksquare $c_{\mathfrak{p}} \in {}^{K}/\!\Box$ for every $\mathfrak{p} \in \mathcal{W}$

such that

$$(a,b)_{\mathfrak{p}}=(ta,tb)_{T_{\mathfrak{p}}}, \qquad \text{for all } a,b\in {}^{K}/\!\square,\ \mathfrak{p}\in X_{K}$$

and

$$\operatorname{ord}_{\mathfrak{p}} c_{\mathfrak{p}} \equiv 1 + \operatorname{ord}_{T\mathfrak{p}} t c_{\mathfrak{p}} \pmod{2}, \qquad \text{for all } \mathfrak{p} \in \mathcal{W}.$$

Big Small question: How do wild sets look like?

SMALL QUESTION

Describe wild sets/points in global fields:

- number fields;
- function fields.

RATIONALS AND GAUSSIAN RATIONALS

THEOREM (SOMODI, 2006)

A finite set $\mathcal{W} \subset X_{\mathbb{Q}}$ is wild iff for every $(p) \in \mathcal{W}$, either p = 2 or $p \equiv 1 \pmod{4}$.

Theorem (Somodi, 2008)

Every finite set $W \subset X_{\mathbb{Q}(i)}$ is wild.

RATIONALS AND GAUSSIAN RATIONALS

THEOREM (SOMODI, 2006)

A finite set $W \subset X_{\mathbb{Q}}$ is wild iff for every $(p) \in W$, either p = 2 or $p \equiv 1 \pmod{4}$.

THEOREM (SOMODI, 2008)

Every finite set $W \subset X_{\mathbb{Q}(i)}$ is wild.

GENERAL NUMBER FIELDS: SET-UP

- \blacksquare $[K:\mathbb{Q}]<\infty;$
- K has a unique dyadic prime 0;
- $\mathfrak{d} \in 2C_{K}$
- $rk_2 C_k = rk_2 C_K^+$

($C_{\mathcal{K}}^+$ narrow ideal class group, i.e. fractional ideals modulo totally positive ones).

THEOREM (CZOGAŁA, ROTHKEGEL; 2014)

- K number field as above,
- $\blacksquare \mathfrak{p}_1, \ldots, \mathfrak{p}_n \text{ primes of } K;$
- $\mathfrak{p}_i \in 2C_K$ for every i;
- lacksquare -1 is a local square at every \mathfrak{p}_i

Then $W := \{\mathfrak{p}_1, \dots, \mathfrak{p}_n\}$ is a wild set.

FUNCTION FIELDS: SET-UP

- K global function field;
- $\mathbb{k} = \mathbb{F}_q$ full field of constants $(2 \nmid q)$;
- X_K set of all primes of K= smooth, irreducible complete curve over k;
- \bullet (t, T) always denotes some self-equivalence of K, i.e.

WILD SINGLETONS

THEOREM

Let $\mathfrak{p} \in X_K$. The following conditions are equivalent:

- $\mathfrak{p} \in 2 \cdot \operatorname{Pic} K \ (\mathfrak{p} \ is \ even);$
- p is a unique wild point of some self-equivalence of K.

If $K = \mathbb{k}(x)$, then deg : Pic $K \xrightarrow{\sim} \mathbb{Z}$, hence:

OBSERVATION

Over k(x), the following conditions are equivalent:

- **■** {**p**} is a wild set;
- p is an even point;
- lacksquare deg $\mathfrak{p}\in 2\mathbb{Z}$.

If $K = \mathbb{k}(x)$, then deg : Pic $K \xrightarrow{\sim} \mathbb{Z}$, hence:

OBSERVATION

Over k(x), the following conditions are equivalent:

$$\{\mathfrak{p}\}\ \textit{wild set}\iff \mathfrak{p}\in 2\,\mathsf{Pic}\,\mathsf{K}\iff \mathsf{deg}\,\mathfrak{p}\in 2\mathbb{Z}.$$

In general, deg : Pic $K \rightarrow \mathbb{Z}$, thus:

OBSERVATION

Every even point has an even degree.

EXAMPLE

The opposite implication fails in general:

- \blacksquare $\Bbbk = \mathbb{F}_3$,
- X elliptic curve $y^2 x^3 + x = 0$;
- X has:
 - 6 point of degree 2, none of them even,
 - 12 points of degree 4, none of them even.

Proposition

- X smooth (hyper)elliptic curve $y^2 f(x) = 0$,
- deg $f \notin 2\mathbb{Z}$,
- K associated function field,
- $\mathbf{p} \in X$, $\deg \mathfrak{p} \in 2\mathbb{Z}$.

Then $\mathfrak p$ is even iff there is $\lambda \in K$ s.t.

$$\operatorname{\mathsf{Norm}}_{\mathcal{K}/\Bbbk(x)} \mathfrak{p} \xrightarrow{\operatorname{\mathsf{Div}} \Bbbk(x) \to \Bbbk(x)^*} \operatorname{\mathsf{Norm}}_{\mathcal{K}/\Bbbk(x)} \lambda$$

PROPOSITION

- X smooth (hyper)elliptic curve $y^2 f(x) = 0$,
- f monic, $\deg f \notin 2\mathbb{Z}$,
- K associated function field.

Then there are infinitely many even points (wild singletons) of K.

THEOREM

- K global function field;
- X_K associated smooth and complete curve;
- $lackbox{}{}$ $\mathcal{W}_1:=\mathcal{W}(\mathcal{T}_1,t_1)$ a wild set of some self-equivalence (\mathcal{T}_1,t_1) ;
- $W_2 := T_1(W(T_2, t_2))$ an image of a wild set of T_2, t_2 .

Then $W_1 \cup W_2$ is a wild set.

(The associated self-equivalence being $(T_2 \circ T_1, t_2 \circ t_1)$.)

THEOREM

- K global function field;
- X_K associated smooth curve;
- $\mathfrak{p}_1,\ldots,\mathfrak{p}_n\in X$ even points.

Then $W := \{\mathfrak{p}_1, \dots, \mathfrak{p}_n\}$ is a wild set.

THESE ARE NOT THE ONLY ONES!

- \blacksquare $\mathbb{k} = \mathbb{F}_5$;
- *X* elliptic curve $y^2 + x^3 + x + 2 = 0$;
- \blacksquare $\mathfrak{p},\mathfrak{q}\in X$, $\mathfrak{p}\sim (1,1)$, $\mathfrak{q}\sim (1,4)$.

Then

- neither p nor q is even,
- \mathfrak{D} but $\mathcal{W} := \{\mathfrak{p}, \mathfrak{q}\}$ is a wild set!

OBSERVATION

There are irreducible wild sets, which are not singletons!

THESE ARE NOT THE ONLY ONES!

- \blacksquare $\Bbbk = \mathbb{F}_5$;
- *X* elliptic curve $y^2 + x^3 + x + 2 = 0$;
- \blacksquare $\mathfrak{p},\mathfrak{q}\in X$, $\mathfrak{p}\sim (1,1)$, $\mathfrak{q}\sim (1,4)$.

Then

- neither p nor q is even,
- 2 but $\mathcal{W} := \{\mathfrak{p}, \mathfrak{q}\}$ is a wild set!

OBSERVATION

There are irreducible wild sets, which are not singletons!

NECESSARY CONDITION (NC)

THEOREM

- K global function field;
- X_K associated smooth curve;
- ullet $\mathcal{W} \subset X$ a finite wild set.

Then

$$|\mathcal{W}| \geq 2 \cdot \mathsf{rk}_2 \langle \mathfrak{p}_1 + 2 \, \mathsf{Pic} \, \mathcal{K}, \dots, \mathfrak{p}_n + 2 \, \mathsf{Pic} \, \mathcal{K} \rangle$$

PROPOSITION

- K global function field;
- X_K associated smooth and complete curve;
- $\blacksquare \mathfrak{p}, \mathfrak{q} \in X_K$;
- $ightharpoonup \operatorname{rk}_2\langle \mathfrak{p}+2\operatorname{Pic} K, \mathfrak{q}+2\operatorname{Pic} K \rangle = 1.$

Then $\{\mathfrak{p},\mathfrak{q}\}$ is a wild set.

FURTHER EXAMPLES

NC is sufficient for:

- triples (providing that -1 is a local square);
- sets $\mathcal{W} \subset X_K$ s.t. $\operatorname{rk}_2\langle \mathcal{W} + 2\operatorname{Pic} K \rangle \leq 1$;
- sets displaying certain kind of symmetry.

Conjecture

NC is a necessary and sufficient condition for wildness.

FURTHER EXAMPLES

NC is sufficient for:

- triples (providing that -1 is a local square);
- sets $\mathcal{W} \subset X_K$ s.t. $\operatorname{rk}_2\langle \mathcal{W} + 2\operatorname{Pic} K \rangle \leq 1$;
- sets displaying certain kind of symmetry.

Conjecture

NC is a necessary and sufficient condition for wildness.

... AND BEYOND

[Sharif; 2013]

Divisibility in Picard groups of curves over over local fields.

[Czogała, Rothkegel, Sładek; 2016]

Wild sets w.r.t. higher degree forms in number fields.

[Marshall, Gładki; 2017]

Witt equivalence of function fields over global field. Tame/wild points play a crucial role, again.

Thank you for your attention