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BIG QUESTION

PROBLEM

To what extend
geometry is determined by arithmetic?
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BIG QUESTION EXAMPLE: PYTHAGORAS THEOREM

a?+b%=c?

a

For this to work, one needs an arithmetic property:

Y O0=0
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BIG QUESTION

PROBLEM

To what extend
geometry is determined by arithmetic?

m linear structures = affine geometry — the same over any field;

m hence look at orthogonality, angles, lengths. ..
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NOTATION

m R domain 12 € R (resp. K field, char K # 2);
m M finitely generated projective R-module;
m {: M x M — R symmetric, bilinear and non-degenerate

ie. &M= Homg(M, R), (é(a))(b) = ¢(a, b);

m £ defines orthogonal geometry on M.
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OVER THE REALS

Standard dot product determines:

m lengths
vl =+Vvev;
m angels
vew
cosq = ———;
([l - [Jwll

m in particular orthogonality

viw < vew=0.
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OVER AN ARBITRARY FIELD

m orthogonality is well defined
viliw <= &(v,w)=0;

m ‘magnitude” of an element ~ valuation.
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LET’S BE MORE SPECIFIC

Problems:
P1: Compare two quadratic (orthogonal) spaces.
P2: Describe all possible orthogonal geometries.

P3: Compare classes of orthogonal geometries over two
distinct rings.
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P1: COMPARE QUADRATIC SPACES

IsoMETRY (V,&) = (W, ():
t: V=W, &(u,v) = ((tu, tv);
SIMILARITY (V,&) ~ (W, ():

(V, &) L hyperbolic = (W, () L hyperbolic;
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ISOMETRY AND VALUATIONS

WEAK HASSE PRINCIPLE:

K global field, Xy set of all primes:

(V.= (W.Q) <= e Xi: (V.ODK = (W.)ekK,

WEAK WITT THEOREM:
m K function field over a real closed field k,
m i real points of K, trivial on k

(V,f)%(W,C) < VPEVK: (V75)®Kp (W7€)®Kp

xR

=
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SIMILARITY AND VALUATIONS

STRONG HASSE PRINCIPLE:

K global field, Xk set of all primes:
(V,) p (W.() &= VpeXk: (V,§) @K, o (W, Q) @ Ky
P

WITT THEOREM:

m K function field over a real closed field k,

m vk real points of K, trivial on k

(V,f)’;(W,C) < va’YK: (V7§)®KP;;(W7C)®KP

for dim&,dim ¢ > 3.
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P1: COMPARE QUADRATIC SPACES

In both cases we used to compare quadratic spaces.
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P2: DESCRIBE ALL ADMISSIBLE ORTHOGONAL GEOMETRIES

WITT RING
Set of similarity classes of non-degenarte bilinear R-modules with

L orthogonal sum
® tensor product
is a ring called Witt ring of R, denoted WR.

WITT FUNCTOR

R — WR is a covariant endofunctor on the category of
commutative rings.
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P3: COMPARE CLASSES OF ORTHOGONAL GEOMETRIES

Find criteria for fields/rings for Witt functor to take equal values.
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THIS IS TOO GENERAL!

In full generality they do not match!

C((x) | Fs
arithmetics very different
valuations lots \ trivial only
Witt rings WC((x)) = WFs
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NARROW A CLASS OF FIELDS

Hasse principles and Witt theorems suggest to concentrate on
certain classes of fields: global fields, real function fields.
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PERLIS, SzyMICZEK, CONNER, LITHERLAND; 1994

THEOREM

m K, L global fields, char K, char L # 2,
m Xk, X sets of all primes of K, L.

Then WK = WL iff there are:

T : Xk = X[, t:K/DL}L/D
such that

(a,b)y = (ta, tb) 1y for all a,b € K/O and p € Xk
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REAL FUNCTION FIELDS

THEOREM (K., 2002)

m k, k' real closed fields,
m K, L function fields (overk, k'),

® Yk, YL Sets (curves) of real points.

Then WK = WL iff there are:
m Tk \ {finite set} homeo, v\ {finite set},
mt: KOS LO

such that

(a},(:)) =1 (ti;_ib> =1 foralla,bandp
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HERE IT 1S

In both cases Witt equivalence depends on
matching valuation on K and L
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HERE IT 1S

In both cases Witt equivalence depends on
matching valuation on K and L
but crudely.
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Z00M IN: REAL FUNCTION FIELDS

ProrosiTIiON (K., 2002)

At every point p where T is defined, we have

ordya=ordryta (mod 2).

ProposITION (K., 2009)

If T is defined on the whole vk, then there is p : WK = WL s.t.
o(WRk) = WRy,

where Ry, Ry are rings of regular functions.
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Z00M IN: REAL FUNCTION FIELDS

ProposITION (K., 2009)

If T is defined on the whole vk, then there is p : WK = WL s.t.

(p( WRK) = WRL,

where Ry, R, are rings of regular functions.

WK —— WL

1= — - WR,
99’VVRK

20/43



Z0OOM IN: GLOBAL FIELDS

m K, L global fields (char K, char L # 2);
m (t, T) as above.

A point p € X is
TAME if ord, a = ord 1, ta for every a € K/,

WILD otherwise.
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Z0OOM IN: GLOBAL FIELDS

THEOREM (CzOGAEA, 2001)

m K, L global fields (char K,char L # 2);
m Ok, Oy integral closures of either Z or Fq[x];
m (t, T) as above.

It every point of K is tame w.r.t (t, T), then
there is ¢ : WK = WL s.t.

go( WOK) = WOL.
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BACK TO OUR BIG QUESTION

arithmetic

?
e ™~
quadratic

valuations
forms

TAME POINTS — valuations and quadratic forms “cooperate”,
WILD POINTS — things get... ehm... “wild".
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META-THEORETIC LEVEL

m All possible Witt equivalences of a given field K,

m “null object” = all self-equivalences (i.e. Witt equivalences
of K with itself).

m K-admissible sets of wild points in X,

m “null objects” = sets of wild points of self-equivalences.

24/43



WILD SET

DEFINITION

A finite set W C Xk is called wild, if it is a set of wild points of
some self-equivalence of K.

25/43



WILD SET

DEFINITION
A finite set W C Xk is called wild, if it is a set of wild points of
some self-equivalence of K.

Explicitly, W is wild if there are:
BT Xk = X
m t: Aut(K/DO),
m o, € K/OforeverypeW
such that

(a, b)p = (ta, tb) T, forall a,b e K/O, p € Xk
and

ord, ¢ =1+ ord7p tg, (mod 2), for all p e W.
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B16¢ SMALL QUESTION: HOW DO WILD SETS LOOK LIKE?

SMALL QUESTION

Describe wild sets/points in global fields:

m number fields;

m function fields.
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RATIONALS AND (GAUSSIAN RATIONALS

THEOREM (SoMoDI, 2006)

A finite set W C Xq is wild iff for every (p) € W,
either p=2 or p=1 (mod 4).
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RATIONALS AND (GAUSSIAN RATIONALS

THEOREM (SoMoDI, 2006)

A finite set W C Xq is wild iff for every (p) € W,
either p=2 or p=1 (mod 4).

THEOREM (SoMODI, 2008)

Every finite set VW C Xq(;) is wild.
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GENERAL NUMBER FIELDS: SET-UP

[K : Q] < o0;

K has a unique dyadic prime ?;
0 € 2Ck

rko Cx = rko C;

(C:z narrow ideal class group, i.e. fractional ideals modulo totally positive ones).
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GENERAL NUMBER FIELDS: SUFFICIENT CONDITION

THEOREM (CZOGALA, ROTHKEGEL; 2014)

m K number field as above,
m P1,...,0p, primes of K;
m p; € 2Ck for every i;

m —1 is a local square at every p;

Then W := {p1,...,pn} is a wild set.
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FUNCTION FIELDS: SET-UP

m K global function field;
m k =F, full field of constants (2 1 q);

m Xk set of all primes of K
= smooth, irreducible complete curve over k;

m (t, T) always denotes some self-equivalence of K, i.e.

te AUt(K/D)7 T:X= X7 ('7 )p = (t'a t')Tp
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WILD SINGLETONS

THEOREM

Let p € Xk. The following conditions are equivalent:

mpe2-PicK (pis even),

m p is a unique wild point of some self-equivalence of K.
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SPECIAL CASE: RATIONAL FUNCTIONS

If K =k(x), then deg : Pic K = Z, hence:

OBSERVATION

Over k(x), the following conditions are equivalent:
m {p} is a wild set;

B p iS an even point;
m degp € 2Z.
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SPECIAL CASE: RATIONAL FUNCTIONS

If K =k(x), then deg : Pic K = Z, hence:

OBSERVATION

Over k(x), the following conditions are equivalent:

{p} wild set <= p € 2PicK <= degp € 2Z.

In general, deg : Pic K — Z, thus:

OBSERVATION

Every even point has an even degree.
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EXAMPLE

The opposite implication fails in general:
m k=TF;3,
m X elliptic curve y? — x3 + x = 0;
m X has:

m 6 point of degree 2, none of them even,
m 12 points of degree 4, none of them even.
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YET ANOTHER CRITERION FOR DIVISIBILITY IN PICARD GROUP

PROPOSITION

m X smooth (hyper)elliptic curve y?> — f(x) =0,
m degf ¢ 27,

m K associated function field,

mpeE X, degp € 2Z.

Then p is even iff there is A\ € K s.t.

Div k(x)—k(x)*

Normg /k(x) P Norm /i (x) A
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EVEN POINTS DO EXIST

PROPOSITION

= X smooth (hyper)elliptic curve y?> — f(x) =0,
m f monic, degf ¢ 27Z,

m K associated function field.

Then there are infinitely many even points (wild singletons) of K.
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BIGGER WILD SETS: STITCHING WILD SETS TOGETHER

THEOREM

m K global function field;

m Xy associated smooth and complete curve;

m Wi = W(Ti,t1) a wild set of some self-equivalence (T, t1);
B W, =T (W( Ts, tg)) an image of a wild set of Ta, t).

Then W1 UW, is a wild set.

(The associated self-equivalence being (T2 o Ty, t2 0 t1).)
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BIGGER WILD SETS

THEOREM

m K global function field;
m Xy associated smooth curve;

m P1,...,Ppn € X even points.

Then W :={p1,...,pn} is a wild set.
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THESE ARE NOT THE ONLY ONES!

mk=1IFs

m X elliptic curve y? +x3 +x+2=0;

mp,ge X, p~(1,1), q~(1,4).
Then

neither p nor q is even,

but W := {p,q} is a wild set!
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THESE ARE NOT THE ONLY ONES!

mk=1IFs

m X elliptic curve y? +x3 +x+2=0;

mp,ge X, p~(1,1), q~(1,4).
Then

neither p nor q is even,

but W := {p,q} is a wild set!

OBSERVATION

There are irreducible wild sets, which are not singletons!
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NECESSARY CONDITION (NC)

THEOREM

m K global function field;

m Xy associated smooth curve;
m W C X a finite wild set.

Then
W] > 2-rka(p1 + 2PicK,...,pn + 2PicK)
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NC 1S SUFFICIENT FOR PAIRS

PROPOSITION

m K global function field;

m Xy associated smooth and complete curve;
| p? q E XK!
m rko(p +2PicK,q+ 2PicK) = 1.

Then {p,q} is a wild set.
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FURTHER EXAMPLES

NC is sufficient for:

m triples (providing that —1 is a local square);
m sets W C Xk s.t. rko(W +2PicK) < 1;
m sets displaying certain kind of symmetry.
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FURTHER EXAMPLES

NC is sufficient for:

m triples (providing that —1 is a local square);
m sets W C Xk s.t. rko(W +2PicK) < 1;
m sets displaying certain kind of symmetry.

CONJECTURE

NC is a necessary and sufficient condition for wildness.
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... AND BEYOND

[SHARIF; 2013]

Divisibility in Picard groups of curves over over local fields.

[CzOGALA, ROTHKEGEL, SLADEK; 2016]

Wild sets w.r.t. higher degree forms in number fields.
[MARSHALL, GLADKI; 2017|

Witt equivalence of function fields over global field.
Tame/wild points play a crucial role, again.
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Thank you for your
attention
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