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(K,v) a valued field
vK the value group,
Kwv the residue field.
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(K,v) a valued field
vK the value group,
Kwv the residue field.

If (L|K,v) is a finite extension of valued fields, such that the
extension of v from K to L is unique, then

[L: K]=p"(vL:vK)[Lv: Kv]

where p =charKwv if it is positive and p = 1 otherwise.
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If (L|K,v) is a finite extension of valued fields, such that the
extension of v from K to L is unique, then

[L: K]=p"(vL:vK)[Lv: Kv]
where p =charKwv if it is positive and p = 1 otherwise.

If p™ > 1, then (L|K,v) is called a defect extension.
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immediate extensions

(K,v) a valued field
vK the value group,
Kwv the residue field.

If (L|K,v) is a finite extension of valued fields, such that the
extension of v from K to L is unique, then

[L: K]=p"(vL:vK)[Lv: Kv]
where p =charKwv if it is positive and p = 1 otherwise.
If p™ > 1, then (L|K,v) is called a defect extension.

An extension (F|K,v) of valued fields is called immediate if

(vF :vK)=[Fv:Kv]=1.
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maximal immediate extensions

Fact: Every valued field admits a maximal immediate extension.
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extensions of certain classes of valued fields.
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maximal immediate extensions

Fact: Every valued field admits a maximal immediate extension.

Goals:
@ Describe the structure of maximal immediate extensions of

certain classes of valued fields.

@ Describe the structure of maximal immediate algebraic
extensions of certain classes of valued fields.

@ Determine the classes of valued fields which admit unique
(up to isomorphism) maximal immediate extensions.
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maximal immediate extensions

Fact: Every valued field admits a maximal immediate extension.

Goals:
@ Describe the structure of maximal immediate extensions of
certain classes of valued fields.
@ Describe the structure of maximal immediate algebraic
extensions of certain classes of valued fields.
@ Determine the classes of valued fields which admit unique
(up to isomorphism) maximal immediate extensions.

Problem: Describing all possible extensions of a valuation from a
given field (K, v) to a rational function field L|K.

I

Do the maximal immediate extensions of a given valued
field have finite or infinite transcendence degree?

Anna Blaszczok immediate extensions of valued fields



maximal immediate extensions

Theorem 1

Take a henselian field (K,v) and an extension (L|K,v) of finite
transcendence degree. Assume that v is nontrivial on L and at
least one of the following cases holds:
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maximal immediate extensions

Theorem 1

Take a henselian field (K,v) and an extension (L|K,v) of finite
transcendence degree. Assume that v is nontrivial on L and at
least one of the following cases holds:

1) vL/vK is not a torsion group, or Lv|Kv is transcendental;
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maximal immediate extensions

Theorem 1

Take a henselian field (K,v) and an extension (L|K,v) of finite
transcendence degree. Assume that v is nontrivial on L and at
least one of the following cases holds:

1) vL/vK is not a torsion group, or Lv|Kv is transcendental;
2) vL/vK contains elements of arbitrarily high order,

3) Lv contains elements of arbitrarily high degree over Kv;
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maximal immediate extensions

Theorem 1

Take a henselian field (K,v) and an extension (L|K,v) of finite
transcendence degree. Assume that v is nontrivial on L and at
least one of the following cases holds:

1) vL/vK is not a torsion group, or Lv|Kv is transcendental;
2) vL/vK contains elements of arbitrarily high order,
3) Lv contains elements of arbitrarily high degree over Kv;

4) L|K contains an infinite separable-algebraic subextension.
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maximal immediate extensions

Theorem 1

Take a henselian field (K,v) and an extension (L|K,v) of finite
transcendence degree. Assume that v is nontrivial on L and at
least one of the following cases holds:

1) vL/vK is not a torsion group, or Lv|Kv is transcendental;
2) vL/vK contains elements of arbitrarily high order,
3) Lv contains elements of arbitrarily high degree over Kv;

4) L|K contains an infinite separable-algebraic subextension.

Then each mazimal immediate extension of (L,v) has infinite
transcendence degree over L.
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maximal immediate extensions

Theorem 1

Take a henselian field (K,v) and an extension (L|K,v) of finite
transcendence degree. Assume that v is nontrivial on L and at
least one of the following cases holds:

1) vL/vK is not a torsion group, or Lv|Kv is transcendental;
2) vL/vK contains elements of arbitrarily high order,
3) Lv contains elements of arbitrarily high degree over Kv;

4) L|K contains an infinite separable-algebraic subextension.

Then each mazimal immediate extension of (L,v) has infinite
transcendence degree over L. If in addition the cofinality of vL
is countable, then already (L,v)¢ has infinite transcendence
degree over L.
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maximal immediate extensions

A valued field is called maximal if it admits no proper
immediate extensions.
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A valued field is called maximal if it admits no proper
immediate extensions.

Every maximal field (M, v) is:

@ henselian,
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A valued field is called maximal if it admits no proper
immediate extensions.
Every maximal field (M, v) is:
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@ complete,
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A valued field is called maximal if it admits no proper
immediate extensions.
Every maximal field (M, v) is:

@ henselian,

@ complete,

o defectless, i.e., [L: M] = (vL :vM)[Lv : Mv] for every

finite extension L|M,
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maximal immediate extensions

A valued field is called maximal if it admits no proper
immediate extensions.
Every maximal field (M, v) is:

@ henselian,

@ complete,

o defectless, i.e., [L: M] = (vL :vM)[Lv : Mv] for every

finite extension L|M,

A finite extension of maximal field is again a maximal field.
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maximal immediate extensions

A valued field is called maximal if it admits no proper
immediate extensions.
Every maximal field (M, v) is:

@ henselian,

@ complete,
o defectless, i.e., [L: M] = (vL :vM)[Lv : Mv] for every

finite extension L|M,

A finite extension of maximal field is again a maximal field.

Take a mazimal field (K,v) of characteristic 0 or of positive
characteristic p and finite p-degree. If (L|K,v) is an algebraic
extension, then the field (L,v) is mazimal if and only if L|K s
finite.
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Uniqueness of maximal immediate extensions

A valued field (K, v) of residue characteristic p is called a
Kaplansky field if it satisfies the following conditions:

(K1) if p > 0 then vK is p-divisible,
(K2) the residue field Kv is perfect,

(K3) the residue field Kv admits no finite separable extension
of degree divisible by p.
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Uniqueness of maximal immediate extensions

A valued field (K, v) of residue characteristic p is called a
Kaplansky field if it satisfies the following conditions:

(K1) if p > 0 then vK is p-divisible,
(K2) the residue field Kv is perfect,

(K3) the residue field Kv admits no finite separable extension
of degree divisible by p.

Theorem 3 (I. Kaplansky)

The mazimal immediate extension of a Kaplansky field (K,v) is
unique up to valuation preserving isomorphism over K.
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Uniqueness of maximal immediate extensions

A valued field (K, v) of residue characteristic p is called a
Kaplansky field if it satisfies the following conditions:

(K1) if p > 0 then vK is p-divisible,
(K2) the residue field Kv is perfect,

(K3) the residue field Kv admits no finite separable extension
of degree divisible by p.

Theorem 3 (I. Kaplansky)

The mazimal immediate extension of a Kaplansky field (K,v) is
unique up to valuation preserving isomorphism over K.

o There are valued fields admitting non-isomorphic maximal
immediate extensions.
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Uniqueness of maximal immediate extensions

Theorem 4

Take a henselian field (K, v) of residue characteristic p. Assume
that the condition (K3) does not hold (i.e., the residue field Kv
admits a finite separable extension of degree divisible by p) and
(K, v) is not separable-algebraically mazimal. Then there is a
finite tame extension E of K such that (E,v) admits two
mazimal immediate algebraic extensions which are not

1somorphic over E.
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Uniqueness of maximal immediate extensions

Theorem 4

Take a henselian field (K, v) of residue characteristic p. Assume
that the condition (K3) does not hold (i.e., the residue field Kv
admits a finite separable extension of degree divisible by p) and
(K, v) is not separable-algebraically mazimal. Then there is a
finite tame extension E of K such that (E,v) admits two
mazimal immediate algebraic extensions which are not
1somorphic over E.

General assumption:

(K, v) is a henselian field of residue characteristic p such that:
(K1) if p > 0 then vK is p-divisible,

(K2) the residue field Kv is perfect.
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defect extensions

Take a valued field (F,v) of characteristic p > 0 and an
Artin-Schreier defect extension (F(¢)|F,v) with 9 — ¢ € K.
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defect extensions

Take a valued field (F,v) of characteristic p > 0 and an
Artin-Schreier defect extension (F(¢)|F,v) with 9 — ¢ € K.

We call (F(¢)|F,v) a dependent Artin-Schreier defect extension
if there exists a purely inseparable defect extension (F'(n)|F,v)
of degree p, such that

v(in—1) >v(W —c) forall ce K.
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Take a valued field (F,v) of characteristic p > 0 and an
Artin-Schreier defect extension (F(¢)|F,v) with 9 — ¢ € K.

We call (F(¢)|F,v) a dependent Artin-Schreier defect extension
if there exists a purely inseparable defect extension (F'(n)|F,v)
of degree p, such that

v(in—1) >v(W —c) forall ce K.

Suppose that (F(a'/P)|F,v) is a purely inseparable defect
extension of degree p and a'/? ¢ Fe.
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defect extensions

Take a valued field (F,v) of characteristic p > 0 and an
Artin-Schreier defect extension (F(¢)|F,v) with 9 — ¢ € K.

We call (F(¢)|F,v) a dependent Artin-Schreier defect extension
if there exists a purely inseparable defect extension (F'(n)|F,v)
of degree p, such that

v(in—1) >v(W —c) forall ce K.

Suppose that (F(a'/P)|F,v) is a purely inseparable defect
extension of degree p and a'/? ¢ Fe.
a

YP—a — YP-0YV—a—o XP-X-
Y =bX bp
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defect extensions

Take a valued field (F,v) of characteristic p > 0 and an
Artin-Schreier defect extension (F(¢)|F,v) with 9 — ¢ € K.

We call (F(¢)|F,v) a dependent Artin-Schreier defect extension
if there exists a purely inseparable defect extension (F'(n)|F,v)
of degree p, such that

v(in—1) >v(W —c) forall ce K.

Suppose that (F(a'/P)|F,v) is a purely inseparable defect
extension of degree p and a'/? ¢ Fe.

YP—a — YP-W W oqg— XP-X-— =
Y =bX bp

For b € F* of large enough value, X? — X — /& induces a

dependent Artin-Schreier defect extension of F'.
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defect and maximal immediate extensions

(K, v) henselian, charKv = p;
(K1) if p > 0 then vK is p-divisible,
(K2) the residue field Kv is perfect.

If charK = p and K admits at least one dependent
Artin-Schreier defect extension, then it admits an infinite tower
of such extensions.
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defect and maximal immediate extensions

(K, v) henselian, charKv = p;
(K1) if p > 0 then vK is p-divisible,
(K2) the residue field Kv is perfect.

Theorem 5

If charK = p and K admits at least one dependent
Artin-Schreier defect extension, then it admits an infinite tower
of such extensions.

Theorem 6

Assume that (K,v) admits a mazimal immediate extension of
finite transcendence degree. Then
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defect and maximal immediate extensions

(K, v) henselian, charKv = p;
(K1) if p > 0 then vK is p-divisible,
(K2) the residue field Kv is perfect.

Theorem 5

If charK = p and K admits at least one dependent
Artin-Schreier defect extension, then it admits an infinite tower
of such extensions.

Theorem 6

Assume that (K,v) admits a mazimal immediate extension of
finite transcendence degree. Then

o (K,v) admits no immediate separable-algebraic extensions,
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defect and maximal immediate extensions

(K, v) henselian, charKv = p;
(K1) if p > 0 then vK is p-divisible,
(K2) the residue field Kv is perfect.

Theorem 5

If charK = p and K admits at least one dependent
Artin-Schreier defect extension, then it admits an infinite tower
of such extensions.

Theorem 6

Assume that (K,v) admits a mazimal immediate extension of
finite transcendence degree. Then

o (K,v) admits no immediate separable-algebraic extensions,

o the perfect hull of K is contained in the completion of K,
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defect and maximal immediate extensions

(K, v) henselian, charKv = p;
(K1) if p > 0 then vK is p-divisible,
(K2) the residue field Kv is perfect.

Theorem 5

If charK = p and K admits at least one dependent
Artin-Schreier defect extension, then it admits an infinite tower
of such extensions.

Theorem 6

Assume that (K,v) admits a mazimal immediate extension of
finite transcendence degree. Then

o (K,v) admits no immediate separable-algebraic extensions,
o the perfect hull of K is contained in the completion of K,

e the mazximal immediate extension of (K,v) is unique up to
1somorphism.
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maximal immediate extensions

Theorem 7

Suppose that (M, v) is maximal, of finite transcendence degree
over K and v is nontrivial on M. Take L|K to be the mazimal
separable-algebraic subextension of M|K. Then we have:
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maximal immediate extensions

Theorem 7

Suppose that (M, v) is maximal, of finite transcendence degree
over K and v is nontrivial on M. Take L|K to be the mazimal
separable-algebraic subextension of M|K. Then we have:

o K is a separably tame field,
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maximal immediate extensions

Theorem 7

Suppose that (M, v) is maximal, of finite transcendence degree
over K and v is nontrivial on M. Take L|K to be the mazimal
separable-algebraic subextension of M|K. Then we have:

o K is a separably tame field,

o L|K is a finite tame extension,
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maximal immediate extensions

Theorem 7

Suppose that (M, v) is maximal, of finite transcendence degree
over K and v is nontrivial on M. Take L|K to be the mazimal
separable-algebraic subextension of M|K. Then we have:

o K is a separably tame field,

o L|K is a finite tame extension,

o the perfect hull of K is contained in the completion of K,
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maximal immediate extensions

Theorem 7

Suppose that (M, v) is maximal, of finite transcendence degree
over K and v is nontrivial on M. Take L|K to be the mazimal
separable-algebraic subextension of M|K. Then we have:

K is a separably tame field,

L|K is a finite tame extension,
the perfect hull of K is contained in the completion of K,
vM/vK and Mv|Kv are finite.

e o6 o
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valued function fields

Take a valued field (L,v), n > 1, an ordered abelian group
extension I' of vL and a field extension k& of Luv.
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valued function fields

Take a valued field (L,v), n > 1, an ordered abelian group
extension I' of vL and a field extension k& of Luv.

When do we have an extension of v to the rational function field
L(x1,...,x,) such that

vL(x1,...,zy) =1 and L(zy,...,zp)v=k? (1)
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valued function fields

Take a valued field (L,v), n > 1, an ordered abelian group
extension I' of vL and a field extension k of Lv.
When do we have an extension of v to the rational function field
L(x1,...,x,) such that

vL(x1,...,zy) =1 and L(zy,...,zp)v=k? (1)

Theorem 8

Assume that T'/vL is a torsion group and k|Lv is an algebraic
extension, both countably generated. Suppose that at least one of
the following cases holds:
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valued function fields

Take a valued field (L,v), n > 1, an ordered abelian group
extension I' of vL and a field extension k of Lv.
When do we have an extension of v to the rational function field
L(x1,...,x,) such that

vL(x1,...,zy) =1 and L(zy,...,zp)v=k? (1)

Theorem 8

Assume that T'/vL is a torsion group and k|Lv is an algebraic
extension, both countably generated. Suppose that at least one of
the following cases holds:

e the group I'/vL is infinite or the extension k|Lv is infinite,
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valued function fields

Take a valued field (L,v), n > 1, an ordered abelian group
extension I' of vL and a field extension k of Lv.
When do we have an extension of v to the rational function field
L(x1,...,x,) such that

vL(x1,...,zy) =1 and L(zy,...,zp)v=k? (1)

Theorem 8

Assume that T'/vL is a torsion group and k|Lv is an algebraic
extension, both countably generated. Suppose that at least one of
the following cases holds:

e the group I'/vL is infinite or the extension k|Lv is infinite,

e (L,v) admits an immediate extension of trdeg > n
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valued function fields

Take a valued field (L,v), n > 1, an ordered abelian group
extension I' of vL and a field extension k of Lv.
When do we have an extension of v to the rational function field
L(x1,...,x,) such that

vL(x1,...,zy) =1 and L(zy,...,zp)v=k? (1)

Theorem 8

Assume that T'/vL is a torsion group and k|Lv is an algebraic
extension, both countably generated. Suppose that at least one of
the following cases holds:

e the group I'/vL is infinite or the extension k|Lv is infinite,
e (L,v) admits an immediate extension of trdeg > n

o K" admits an infinite separable-algebraic extension (L, v)
with vL C T and Lv C k.
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valued function fields

Take a valued field (L,v), n > 1, an ordered abelian group
extension I' of vL and a field extension k of Lv.
When do we have an extension of v to the rational function field
L(x1,...,x,) such that

vL(x1,...,zy) =1 and L(zy,...,zp)v=k? (1)

Theorem 8

Assume that T'/vL is a torsion group and k|Lv is an algebraic
extension, both countably generated. Suppose that at least one of
the following cases holds:

e the group I'/vL is infinite or the extension k|Lv is infinite,
e (L,v) admits an immediate extension of trdeg > n

o K" admits an infinite separable-algebraic extension (L, v)
with vL C T and Lv C k.

Then there is an extension of v to the rational function field
L(x1,...,xy) such that (1) holds.
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valued function fields

Take a valued field (K, v) of residue characteristic exponent p.
Assume that vK is p-divisible and Kv is perfect.
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valued function fields

Theorem 9

Take a valued field (K, v) of residue characteristic exponent p.
Assume that vK is p-divisible and Kv is perfect. Further, take
an ordered abelian group extension I' of vK such that T'/vK is a
torsion group, and an algebraic extension k of Kv, both
countably generated.
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valued function fields

Theorem 9

Take a valued field (K, v) of residue characteristic exponent p.
Assume that vK is p-divisible and Kv is perfect. Further, take
an ordered abelian group extension I' of vK such that T'/vK is a
torsion group, and an algebraic extension k of Kv, both
countably generated. Then there is an extension of v from K to
the rational function field K (x4, ..., x,) with

vK(x1,...,2n) =T and K(z1,...,2p)v =k

Anna Blaszczok immediate extensions of valued fields



valued function fields

Theorem 9

Take a valued field (K, v) of residue characteristic exponent p.
Assume that vK is p-divisible and Kv is perfect. Further, take
an ordered abelian group extension I' of vK such that T'/vK is a
torsion group, and an algebraic extension k of Kv, both
countably generated. Then there is an extension of v from K to
the rational function field K (x4, ..., x,) with

vK(x1,...,2n) =T and K(z1,...,2p)v =k

if and only if at least one of the two extensions I'|lvK and k|Kwv
is infinite or (K,v) admits an immediate extension of
transcendence degree n.
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maximal immediate extensions

Take a valued field (K, v) of characteristic p > 0.
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maximal immediate extensions

Take a valued field (K, v) of characteristic p > 0.
Assume that vK/pvK is infinite
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maximal immediate extensions

Take a valued field (K, v) of characteristic p > 0.
Assume that vK/pvK is infinite

or
[Kv : (Kv)P] is infinite.
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maximal immediate extensions

Take a valued field (K, v) of characteristic p > 0.
Assume that vK/pvK is infinite

or
[Kv : (Kv)P] is infinite.

Then in particular [K : KP] is infinite.
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maximal immediate extensions

Take a maximal field (K, v) of characteristic p > 0 for which
[K : KP] is infinite.
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maximal immediate extensions

Take a maximal field (K, v) of characteristic p > 0 for which
[K : KP] is infinite.
Then (vK : pvK) or [Kv : (Kv)P| is infinite.
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maximal immediate extensions

Take a maximal field (K, v) of characteristic p > 0 for which
[K : KP] is infinite.

Then (vK : pvK) or [Kv : (Kv)P| is infinite.

Consider K C L C KY? such that Kl/p|L is immediate and
infinite.
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maximal immediate extensions

Take a maximal field (K, v) of characteristic p > 0 for which
[K : KP] is infinite.
Then (vK : pvK) or [Kv : (Kv)P| is infinite.
Consider K C L C KY? such that Kl/p|L is immediate and
infinite.

o (K7 v) is a maximal immediate extension of (L, v).
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maximal immediate extensions

Take a maximal field (K, v) of characteristic p > 0 for which
[K : KP] is infinite.
Then (vK : pvK) or [Kv : (Kv)P| is infinite.
Consider K C L C KY? such that Kl/p|L is immediate and
infinite.

o (K7 v) is a maximal immediate extension of (L, v).
Take infinitely many elements 7; € K'/? which are
p-independent over L.
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maximal immediate extensions

Take a maximal field (K, v) of characteristic p > 0 for which
[K : KP] is infinite.
Then (vK : pvK) or [Kv : (Kv)P| is infinite.
Consider K C L C KY? such that Kl/p|L is immediate and
infinite.

o (K7 v) is a maximal immediate extension of (L, v).
Take infinitely many elements 7; € K'/? which are

p-independent over L. Under additional assumptions on vK we
can choose 7; to not lie in the completion of (L,v).
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maximal immediate extensions

Take a maximal field (K, v) of characteristic p > 0 for which
[K : KP] is infinite.
Then (vK : pvK) or [Kv : (Kv)P| is infinite.
Consider K C L C KY? such that Kl/p|L is immediate and
infinite.

o (K7 v) is a maximal immediate extension of (L, v).
Take infinitely many elements 7; € K'/? which are

p-independent over L. Under additional assumptions on vK we
can choose 7; to not lie in the completion of (L,v).
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maximal immediate extensions

Take a maximal field (K, v) of characteristic p > 0 for which
[K : KP] is infinite.
Then (vK : pvK) or [Kv : (Kv)P| is infinite.
Consider K C L C KY? such that Kl/p|L is immediate and
infinite.

o (K7 v) is a maximal immediate extension of (L, v).
Take infinitely many elements 7; € K'/? which are

p-independent over L. Under additional assumptions on vK we
can choose 7; to not lie in the completion of (L,v).

_m
W

)

XPoqpf — XP_X
i — U

(L(01,...,9,)|L(Y,...,0,-1,v) is an Artin-Schreier defect
extension, n € N.
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maximal immediate extensions

Take a maximal field (K, v) of characteristic p > 0 for which
[K : KP] is infinite.

Then (vK : pvK) or [Kv : (Kv)P| is infinite.

Consider K C L C KY? such that Kl/p|L is immediate and
infinite.

o (K7 v) is a maximal immediate extension of (L, v).
Take infinitely many elements 7; € K'/? which are
p-independent over L. Under additional assumptions on vK we
can choose 7; to not lie in the completion of (L,v).
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(L(01,...,9,)|L(Y,...,0,-1,v) is an Artin-Schreier defect
extension, n € N.
(L(Yy, : n € N)|L,v) is an infinite immediate separable-algebraic
extension of henselian fields.
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maximal immediate extensions

Theorem 10

Take a henselian field (L,v) and an extension (F|L,v) of finite
transcendence degree. Assume that v is nontrivial on L and one
of the following cases holds:

4) F|L contains an infinite separable-algebraic subextension.

Then each mazimal immediate extension of (F,v) has infinite
transcendence degree over F'.
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maximal immediate extensions

Theorem 10

Take a henselian field (L,v) and an extension (F|L,v) of finite
transcendence degree. Assume that v is nontrivial on L and one
of the following cases holds:

4) F|L contains an infinite separable-algebraic subextension.

Then each mazimal immediate extension of (F,v) has infinite
transcendence degree over F'.

Set F' = L(9¥, : n € N).
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maximal immediate extensions

Theorem 10

Take a henselian field (L,v) and an extension (F|L,v) of finite
transcendence degree. Assume that v is nontrivial on L and one
of the following cases holds:

4) F|L contains an infinite separable-algebraic subextension.

Then each mazimal immediate extension of (F,v) has infinite
transcendence degree over F'.

Set F' = L(9¥,, : n € N). Then (F,v) admits a maximal
immediate extension of infinite transcendence degree.
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maximal immediate extensions

Theorem 10

Take a henselian field (L,v) and an extension (F|L,v) of finite
transcendence degree. Assume that v is nontrivial on L and one
of the following cases holds:

4) F|L contains an infinite separable-algebraic subextension.

Then each mazimal immediate extension of (F,v) has infinite
transcendence degree over F'.

Set F' = L(9¥,, : n € N). Then (F,v) admits a maximal
immediate extension of infinite transcendence degree. Since
(F|L,v) is also immediate, we obtain that
e (L,v) admits a maximal immediate extension of infinite
transcendence degree.
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maximal immediate extensions

There are valued fields which admit an algebraic mazximal
immediate extension as well as one of infinite transcendence
degree.
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