Mal’tsev Meeting 2010
In honour of Y.L. Ershov, May 2-6 2010.

May 5, 2010

Salma Kuhlmann
Schwerpunkt Reelle Algebra und Geometrie,
Fachbereich Mathematik und Statistik,
Universität Konstanz,
78457 Konstanz, Germany

Email: salma.kuhlmann@uni-konstanz.de

The slides of this talk are available at:
Valued Differential Fields.
Joint work with M. Matusinski

I. Motivation

I.1 Ax - Kochen Ershov Principles for Valued Fields.

Let K be a field and (Γ, \preceq) a totally ordered abelian group (written multiplicatively). A surjective map
\[v : K^\times \to \Gamma \]

is a field valuation if for all $a, b \in K^\times$:
\[v(ab) = v(a).v(b) \] (homomorphism)
\[v(a + b) \preceq \max\{v(a), v(b)\} \] (ultrametric inequality).

$K_v := \{a \in K \mid v(a) \preceq 1\}$ is the valuation ring of K
$I_v := \{a \in K \mid v(a) < 1\}$ the maximal ideal of K_v.
$v(K) := \Gamma$ is the value group (also: monomials group)
$K_v/I_v := \overline{K}$ is the residue field.
$v(K)$ and \overline{K} are important invariants of a valued field:
AKE Transfer Principle:

Let K and L be two valued fields (plus additional conditions).
Assume that:

K is elementarily equivalent to L
$v(K)$ is elementarily equivalent to $v(L)$.

Then K is elementarily equivalent to L (?)

If in addition L is an extension of K, one can replace: “elementarily equivalent” by “elementary substructure” or “existentially closed” in the above query.

Theorem: Let K be a valued field with $\text{char}(K) = \text{char}(\overline{K})$. Then K is analytically isomorphic to a subfield of a suitable generalized series field.

Let k be a (coefficients) field and (Γ, \preceq) a totally ordered abelian (monomials) group.

$K = k((\Gamma))$ denotes the **generalised series field**. It is the set of maps

$$a : \Gamma \rightarrow k$$

$$\alpha \mapsto a_\alpha$$

such that $\text{Supp} a = \{\alpha \in \Gamma \mid a_\alpha \neq 0\}$ is anti-well-ordered in Γ.

We write these maps $a = \sum_{\alpha \in \text{Supp} \ a} a_\alpha \alpha$.
This set provided with component-wise sum and the following convolution product
\[
(\sum_{\alpha \in \text{Supp } a} a_\alpha \alpha) (\sum_{\beta \in \text{Supp } b} b_\beta \beta) = \sum_{\gamma \in \Gamma} (\sum_{\alpha \beta = \gamma} a_\alpha b_\beta) \gamma
\]
is a field.

For any series \(0 \neq a \), we define its **leading monomial**:
\[
\text{LM } (a) := \max (\text{Supp } a) \in \Gamma.
\]
The map
\[
\text{LM } : K^\times \to \Gamma
\]
is the canonical valuation on \(K \).

E.g. \(\Gamma = \{ x^z ; z \in \mathbb{Z} \} \) (respectively \(\Gamma = \{ x^z ; z \in \mathbb{R} \} \))
gives:
\[
\mathbb{R}((\Gamma)) \text{ the Laurent series field (respectively the Levi-Civita series field).}
\]
• We have classification invariants and universal domains.

• What if the valued fields carry additional structure? Additional structure induced on the value group and residue field. AKE in this framework?

• In particular, generalised series fields are suitable domains for the study of real algebra.

Are they suitable domains for the study of real differential algebra?

This work is the first step in this project:

Endow $K := \mathbb{R}((\Gamma))$ with derivations.
I.3. **Hardy fields.** The set of germs at infinity of real valued functions of a real variable forms a ring under pointwise addition and multiplication of germs.

A **Hardy field** is a subfield closed under differentiation of germs.

A Hardy field H carries a natural valuation:

$$H_v := \{ f \in H ; \lim_{x \to \infty} f \in \mathbb{R} \}$$

Hardy fields are prime examples of valued differential fields.
II. Defining Derivations.

II.1. Hahn groups as monomial groups. Let (Φ, \preceq) be a totally ordered set, that we call the set of fundamental monomials.

Consider the set Γ of formal products $\gamma \in \Gamma$ of the form

$$\gamma = \prod_{\phi \in \Phi} \phi^{\gamma_{\phi}}$$

where $\gamma_{\phi} \in \mathbb{R}$, and the support of γ

$$\text{supp} \ \gamma := \{ \phi \in \Phi \mid \gamma_{\phi} \neq 0 \}$$

is an anti-well-ordered subset of Φ.

Multiplication of formal products is defined pointwise: for $\alpha, \beta \in \Gamma$

$$\alpha \beta = \prod_{\phi \in \Phi} \phi^{\alpha_{\phi} + \beta_{\phi}}$$

Γ is an abelian group with identity 1 (the product with empty support).
We endow Γ with the anti lexicographic ordering \preceq which extends \preceq of Φ:

$$\gamma \succ 1 \text{ if and only if } \gamma_\phi > 0, \text{ for } \phi := \max(\text{supp } \gamma).$$

The **leading fundamental monomial** of $1 \neq \gamma \in \Gamma$ is $\text{LF}(\gamma) := \max(\text{supp } \gamma)$.

Γ is a totally ordered abelian group, the **Hahn group of generalised monic monomials**.

Hahn’s Embedding Theorem: Hahn groups are universal domains.
II.2. Summable Families of Series.

We want to differentiate

\[a = \sum_{\alpha \in \Gamma} a_\alpha \alpha \]

term by term.

There are two problems:

(i) we first have to know how to differentiate a monomial \(\alpha \in \Gamma \),

(ii) then we have to make sense of

\[a' = \sum_{\alpha \in \Gamma} a_\alpha \alpha' \]

a possibly infinite sum of field elements.

sometimes it is possible, but it can go wrong. Easy examples.
Let I be an infinite index set and $\mathcal{F} = \{a_i ; i \in I\}$ be a family of series in K. \mathcal{F} is said to be **summable** if:

(SF1) $\text{Supp } \mathcal{F} := \bigcup_{i \in I} \text{Supp } a_i$ (the support of the family) is an anti-well-ordered subset of Γ.

(SF2) For any $\alpha \in \text{Supp } \mathcal{F}$, the set

$$S_{\alpha} := \{i \in I \mid \alpha \in \text{Supp } a_i\} \subseteq I$$

is finite.

Write $a_i = \sum_{\alpha \in \Gamma} a_{i,\alpha} \alpha$, and assume that $\mathcal{F} = (a_i)_{i \in I}$ is summable. Then

$$\sum_{i \in I} a_i := \sum_{\alpha \in \text{Supp } \mathcal{F}} \left(\sum_{i \in S_{\alpha}} a_{i,\alpha} \right) \alpha$$

is a well defined element of K that we call the **sum** of \mathcal{F}.

11
Series derivations.

Let

\[d_\Phi : \Phi \to K \setminus \{0\} \]

\[\phi \mapsto \phi' \]

be a map.

We say \(d_\Phi \) extends to a series derivation on \(\Gamma \) if the following property holds:

(SD1) For any anti-well-ordered subset \(E \subset \Phi \),

the family \(\left(\frac{\phi'}{\phi} \right)_{\phi \in E} \) is summable.

Then the series derivation \(d_\Gamma \) on \(\Gamma \) (extending \(d_\Phi \)) is defined to be the map

\[d_\Gamma : \Gamma \to K \]

obtained through the following axioms:

(D0) \(1' = 0 \)

(D1) Strong Leibniz rule:

If \(\alpha = \prod_{\phi \in \text{supp} \, \alpha} \phi^{\alpha_\phi} \) then

\[(\alpha)' = \alpha \sum_{\phi \in \text{supp} \, \alpha} \alpha_\phi \frac{\phi'}{\phi}. \]
We say that a series derivation d_{Γ} on Γ \textbf{extends to a series derivation on} K if the following property holds:

\textbf{(SD2)} For any anti-well-ordered subset $E \subset \Gamma$, the family $(\alpha')_{\alpha \in E}$ is summable.

Then the \textbf{series derivation} d on K (extending d_{Γ}) is defined to be the map

$$d : K \rightarrow K$$

obtained through the following axiom:

\textbf{(D2) Strong linearity:}

If $a = \sum_{\alpha \in \text{Supp} a} a_{\alpha} \alpha$, then $a' = \sum_{\alpha \in \text{Supp} a} a_{\alpha} \alpha'$.

\textit{We now study necessary and sufficient condition on the map d_{Φ} so that properties (SD1) and (SD2) hold.}
II.3 Sequential Characterization Summability.

We use the following two key observations:

(i) \mathcal{F} is summable if and only if every countably infinite subfamily is summable.

(ii) (Infinite Ramsey.) Let Γ be a totally ordered set. Every sequence $(\alpha_n)_{n \in \mathbb{N}}$ in Γ has an infinite subsequence which is either constant, or strictly increasing, or strictly decreasing.
We isolate the following two crucial “bad” hypotheses:

(H1) There exists a strictly decreasing sequence \((\phi_n)_{n \in \mathbb{N}}\) in \(\Phi\) and an increasing sequence \((\tau^{(n)})_{n \in \mathbb{N}}\) in \(\Gamma\) such that \(\tau^{(n)} \in \text{Supp} \frac{\phi'_n}{\phi_n}\) for all \(n \in \mathbb{N}\).

(H2) There exist strictly increasing sequences \((\phi_n)_{n \in \mathbb{N}}\) in \(\Phi\) and \((\tau^{(n)})_{n \in \mathbb{N}}\) in \(\Gamma\) such that \(\tau^{(n)} \in \text{Supp} \frac{\phi'_n}{\phi_n}\)
and \(\text{LF} \left(\frac{\tau^{(n+1)}}{\tau^{(n)}} \right) \geq \phi_{n+1}\), for all \(n \in \mathbb{N}\),

Theorem A: A map \(d_\Phi : \Phi \to K \setminus \{0\}\) extends to a series derivation on \(K\) if and only \((H1)\) and \((H2)\) fail.