Discretizations of Lagrangian Mechanics†

George W. Patrick

Applied Mathematics and Mathematical Physics
Mathematics and Statistics, University of Saskatchewan, Canada

August 2007

†With Charles Cuell
Continuous Lagrangian system:

\[Q, \quad L: TQ \to \mathbb{R}, \quad S = \int L(q'(t)) \, dt, \quad \delta S = 0, \]
\[q(a) = q_1, \quad q(b) = q_2 \]
Continuous Lagrangian system:

\[Q, \quad L: TQ \to \mathbb{R}, \quad S = \int L(q'(t)) \, dt, \quad \delta S = 0, \]

\[q(a) = q_1, \quad q(b) = q_2 \]

Discrete means discrete time: \(q(t) \leftrightarrow q_i \).
Continuous Lagrangian system:

\[Q, \quad L: TQ \rightarrow \mathbb{R}, \quad S = \int L(q'(t)) \, dt, \quad \delta S = 0, \]

\[q(a) = q_1, \quad q(b) = q_2 \]

Discrete means discrete time: \(q(t) \leftrightarrow q_i \).

Moser-Veselov discretization:

\[Q, \quad L_d: Q \times Q \rightarrow \mathbb{R}, \quad S_d = \sum L_d(q_{i+1}, q_i), \quad dS_d = 0 \]
Continuous Lagrangian system:

\[Q, \quad L: TQ \to \mathbb{R}, \quad S = \int L(q'(t)) \, dt, \quad \delta S = 0, \]
\[q(a) = q_1, \quad q(b) = q_2 \]

Discrete means discrete time: \(q(t) \leftrightarrow q_i \).

Moser-Veselov discretization:

\[Q, \quad L_d: Q \times Q \to \mathbb{R}, \quad S_d = \sum L_d(q_{i+1}, q_i), \quad dS_d = 0 \]

New framework:

- new discretizations \(\cong \) Moser-Veselov discretizations, but \(\cong \) not explicit
- Moser-Veselov discretizations \(\subseteq \) new discretizations
Equivalent framework to Moser-Veselov. But:
Equivalent framework to Moser-Veselov. But:

- more geometrically appealing
Discretizations of Lagrangian Mechanics

Equivalent framework to Moser-Veselov. But:

- more geometrically appealing
- provides a self-contained Lagrangian formalism
Equivalent framework to Moser-Veselov. But:

- more geometrically appealing
- provides a self-contained Lagrangian formalism
- helps in the formal analysis of the discrete systems
Equivalent framework to Moser-Veselov. But:

- more geometrically appealing
- provides a self-contained Lagrangian formalism
- helps in the formal analysis of the discrete systems
- helps in the construction of numerical integrators
Equivalent framework to Moser-Veselov. But:

- more geometrically appealing
- provides a self-contained Lagrangian formalism
- helps in the formal analysis of the discrete systems
- helps in the construction of numerical integrators

The new framework makes it easier to create sophisticated new discretizations, all the way through nonlinear, nonholonomic systems. It clarifies discretizations of Lagrangian systems, and it should help wherever such discretizations are used.
Contents

1 Introduction
2 Basics
 - curve segments for as discrete tangent vectors
 - lift principle to phase space
3 Discretizations of tangent bundles
 - Discretizations of tangent bundles
 - Discrete tangent bundles
4 Discretizations of Lagrangian systems
 - Discretizations of Lagrangian systems
 - Discrete Lagrangian systems
5 Automatic variationalization
6 Existence, uniqueness, and accuracy of the discrete flow
The discrete representation of a tangent vector is a curve segment. Replace TQ with a set \mathcal{V} of curve segments in Q.

There should be one curve segment for every v_q, so usually $\mathcal{V} = TQ$.
Lifting the continuous variational principle from curves in the configuration space Q to curves in the phase space TQ.

\[v(t) = \frac{dq}{dt}, \quad S = \int L(v(t)) \, dt \]
First order constraint:

\[\{ q'(t) \} = \left\{ v(t) : \frac{d}{dt}(\tau_Q \circ v(t)) = v(t) \right\} \]

So the variational principle

is equivalent to
First order constraint:

\[\{ q'(t) \} = \left\{ v(t) : \frac{d}{dt} (\tau_Q \circ v(t)) = v(t) \right\} \]

So the variational principle

\[L : TQ \to \mathbb{R}, \quad S = \int L(q'(t)) \, dt, \quad \delta S = 0, \]

\[q(a) = q_1, \quad q(b) = q_2 \]

is equivalent to
First order constraint:

\[\{ q'(t) \} = \left\{ v(t) : \frac{d}{dt} \left(\tau_Q \circ v(t) \right) = v(t) \right\} \]

So the variational principle

\[L : TQ \rightarrow \mathbb{R}, \quad S = \int L(q'(t)) \, dt, \quad \delta S = 0, \quad q(a) = q_1, \quad q(b) = q_2 \]

is equivalent to

\[L : TQ \rightarrow \mathbb{R}, \quad S = \int L(v(t)) \, dt, \quad \delta S \cdot \delta v = 0, \quad T_{\tau_Q}(\delta v(a)) = 0, \quad T_{\tau_Q}(\delta v(b)) = 0, \quad \frac{d}{dt} \left(\tau_Q \circ v(t) \right) = v(t) \]
Given a discrete tangent bundle and a discrete Lagrangian

\[\mathcal{V}, \quad \partial^+: \mathcal{V} \to \mathbb{R}, \quad \partial^-: \mathcal{V} \to \mathbb{R} \]

\[L_d: \mathcal{V} \to \mathbb{R} \]

we use the action

\[S = \sum L_d(v_i) \]

To find the discrete analogue of the Lagrangian system, only it is required discrete analogue of the first order constraint.
A discrete tangent bundle for \(\{ q \} = \mathbb{R}^n \) is \(\{ q, v \} = \mathbb{R}^n \times \mathbb{R}^n \) with

\[
\partial^-(q, v) = q, \quad \partial^+(q, v) = q + hv
\]
A discrete tangent bundle for \(\{ q \} = \mathbb{R}^n \) is \(\{ q, v \} = \mathbb{R}^n \times \mathbb{R}^n \) with

\[
\partial^-(q, v) = q, \quad \partial^+(q, v) = q + h v
\]

The equations

\[
q_1 = \partial^-(q, v) = q, \quad q_2 = \partial^+(q, v) = q + h v
\]

have solution

\[
q = q_1, \quad v = \frac{q_2 - q_1}{h}
\]
A discrete tangent bundle for \(\{ q \} = \mathbb{R}^n \) is \(\{ q, v \} = \mathbb{R}^n \times \mathbb{R}^n \) with
\[
\partial^-(q, v) = q, \quad \partial^+(q, v) = q + hv
\]

The equations
\[
q_1 = \partial^-(q, v) = q, \quad q_2 = \partial^+(q, v) = q + hv
\]
have solution
\[
q = q_1, \quad v = \frac{q_2 - q_1}{h}
\]

The derivative of the sequence \(q_i \) is
\[
\nu_i = (\partial^\pm)^{-1}(q_{i+1}, q_i), \quad \partial^\pm \equiv (\partial^+, \partial^-)
\]
\[v_i = (\partial^\pm)^{-1}(q_{i+1}, q_i), \quad \partial^\pm \equiv (\partial^+, \partial^-) \]
\(v_i = (\partial^{\pm})^{-1}(q_{i+1}, q_i), \quad \partial^{\pm} \equiv (\partial^+, \partial^-) \)

The derivative \(v_i \) of \(q_i \) satisfies \(\partial^+(v_{i-1}) = \partial^-(v_i) \)
\[v_i = (\partial^\pm)^{-1}(q_{i+1}, q_i), \quad \partial^\pm \equiv (\partial^+, \partial^-) \]

The derivative \(v_i \) of \(q_i \) satisfies \(\partial^+(v_{i-1}) = \partial^-(v_i) \)

If \(v_i \) satisfies \(\partial^-(v_{i+1}) = \partial^+(v_i) \) then it is the derivative of \(q_i \) defined by \(q_i = \partial^+(v_{i-1}) = \partial^-(v_i) \)
\[v_i = (\partial^\pm)^{-1}(q_{i+1}, q_i), \quad \partial^\pm \equiv (\partial^+, \partial^-) \]

The derivative \(v_i \) of \(q_i \) satisfies \(\partial^+(v_{i-1}) = \partial^-(v_i) \)

If \(v_i \) satisfies \(\partial^-(v_{i+1}) = \partial^+(v_i) \) then it is the derivative of \(q_i \) defined by \(q_i = \partial^+(v_{i-1}) = \partial^-(v_i) \)

The discrete first order condition is

\[\partial^+(v_i) = \partial^-(v_{i+1}) \]

Same as: the curve segments connect
$$S = \sum_{i=1}^{L} d_i(v_i),$$

$$dS \cdot \delta v_i = 0,$$

$$\partial^+ (v_i) = \partial^- (v_{i+1}),$$

$$T \partial^+ (\delta v_i) = T \partial^- (\delta v_{i+1}),$$

$$T \partial^- (\delta v_0) = 0,$$

$$T \partial^+ (\delta v_N) = 0.$$
\[S_d = \sum_{i=1}^{N} L_d(v_i), \quad dS_d \cdot \delta v_i = 0 \]
\[
S_d = \sum_{i=1}^{N} L_d(v_i), \quad dS_d \cdot \delta v_i = 0
\]
\[
\partial^+(v_i) = \partial^-(v_{i+1}), \quad T \partial^+(\delta v_i) = T \partial^-(\delta v_{i+1})
\]
\[S_d = \sum_{i=1}^{N} L_d(v_i), \quad dS_d \cdot \delta v_i = 0 \]

\[\partial^+(v_i) = \partial^-(v_{i+1}), \quad T \partial^+(\delta v_i) = T \partial^-(\delta v_{i+1}) \]

\[T \partial^-(\delta v_0) = 0, \quad T \partial^+(\delta v_N) = 0 \]
A discretization of $T^* \mathcal{M}$ is a tuple $(\psi, \alpha^+, \alpha^-)$, where

1. $\psi: U \subseteq \mathbb{R}^2 \times \mathcal{M} \to \mathcal{M}$, $\alpha^+: [0, a) \to \mathbb{R} \geq 0$, $\alpha^-: [0, a) \to \mathbb{R} \leq 0$,

are such that

2. U is open and $\{0\} \times \{0\} \times \mathcal{M} \subseteq U$;

3. α^+, α^- are C^1, $\alpha^+(0) = \alpha^-(0) = 0$, and $\dot{\alpha}^+ \equiv d \alpha^+ dh(0)$, $\dot{\alpha}^- \equiv d \alpha^- dh(0)$, satisfy $\dot{\alpha}^+ - \dot{\alpha}^- = 1$;

4. the boundary maps defined by $\partial^- h(v_m) \equiv \psi(h, \alpha^-(h), v_m)$, $\partial^+ h(v_m) \equiv \psi(h, \alpha^+(h), v_m)$, are C^1 and $d dh \big|_{h=0} \partial^+ h(v_m) = \dot{\alpha}^+ v_m$, $d dh \big|_{h=0} \partial^- h(v_m) = \dot{\alpha}^- v_m$.

A discretization of $T\mathcal{M}$ is a tuple $(\psi, \alpha^+, \alpha^-)$, where

$$\psi: U \subseteq \mathbb{R}^2 \times \mathcal{M} \rightarrow \mathcal{M}, \quad \alpha^+: [0, a) \rightarrow \mathbb{R}_{\geq 0}, \quad \alpha^-: [0, a) \rightarrow \mathbb{R}_{\leq 0},$$

are such that

1. U is open and $\{0\} \times \{0\} \times \mathcal{M} \subseteq U$;
2. α^+, α^- are C^1, $\alpha^+(0) = \alpha^-(0) = 0$, and
 $$\dot{\alpha}^+ \equiv \frac{d\alpha^+}{dh}(0), \quad \dot{\alpha}^- \equiv \frac{d\alpha^+}{dh}(0),$$
 satisfy $\dot{\alpha}^+ - \dot{\alpha}^- = 1$;
3. $\psi(h, 0, \nu_m) = m$, and $\frac{\partial \psi}{\partial t}(h, 0, \nu_m) = \nu_m$;
4. the boundary maps defined by
 $$\partial^-_h(\nu_m) \equiv \psi(h, \alpha^-(h), \nu_m), \quad \partial^+_h(\nu_m) \equiv \psi(h, \alpha^+(h), \nu_m),$$
 are C^1 and
 $$\frac{d}{dh}\bigg|_{h=0} \partial^+_h(\nu_m) = \dot{\alpha}^+ \nu_m, \quad \frac{d}{dh}\bigg|_{h=0} \partial^-_h(\nu_m) = \dot{\alpha}^- \nu_m.$$
Let \mathcal{M} be a manifold. A \textit{discrete tangent bundle of} \mathcal{M} is a tuple $(\mathcal{V}, \partial^+, \partial^-)$, where \mathcal{V} is a manifold, $\dim \mathcal{V} = 2 \dim \mathcal{M}$ and $\partial^+: \mathcal{V} \to \mathcal{M}$ and $\partial^-: \mathcal{V} \to \mathcal{M}$ satisfy

1. ∂^+ and ∂^- are submersions such that $\ker T\partial^+ \cap \ker T\partial^- = 0$; and

2. for all $m \in \mathcal{M}$, the \textit{backward fiber} $\mathcal{V}_m^+ \equiv (\partial^+)^{-1}(m)$ and the \textit{forward fiber} $\mathcal{V}_m^- \equiv (\partial^-)^{-1}(m)$ meet in exactly one point, denoted 0_m.

The \textit{discrete zero section} is $0_\mathcal{V} \equiv (\partial^\pm)^{-1}\Delta(\mathcal{M} \times \mathcal{M})$, where $\Delta(\mathcal{M} \times \mathcal{M})$ is the diagonal of $\mathcal{M} \times \mathcal{M}$.
Discretizations of tangent bundles
\(\mathcal{M} = \mathbb{R}^k \), \(\psi(h, t, (m, v)) \equiv m + tv + O(h^2) \)
\[M = \mathbb{R}^k, \quad \psi(h, t, (m, v)) \equiv m + tv + O(h^2) \]

\[m^- = m + \alpha^-(h)v + O(h^2), \quad m^+ = m + \alpha^+(h)v + O(h^2) \]
\[\mathcal{M} = \mathbb{R}^k, \quad \psi(h, t, (m, v)) \equiv m + tv + O(h^2) \]

\[m^- = m + \alpha^-(h)v + O(h^2), \quad m^+ = m + \alpha^+(h)v + O(h^2) \]

\[h = 0 : \quad m^- = m, \quad m^+ = m \]
\[\mathcal{M} = \mathbb{R}^k, \quad \psi(h, t, (m, v)) \equiv m + tv + O(h^2) \]

\[m^- = m + \alpha^-(h)v + O(h^2), \quad m^+ = m + \alpha^+(h)v + O(h^2) \]

\[h = 0 : \quad m^- = m, \quad m^+ = m \]

\[\bar{m} = \frac{m^+ + m^-}{2}, \quad z = \frac{m^+ - m^-}{h} \]
\(\mathcal{M} = \mathbb{R}^k, \quad \psi(h, t, (m, v)) \equiv m + tv + O(h^2) \)

\[m^- = m + \alpha^-(h)v + O(h^2), \quad m^+ = m + \alpha^+(h)v + O(h^2) \]

\(h = 0 : \quad m^- = m, \quad m^+ = m \)

\[\bar{m} = \frac{m^+ + m^-}{2}, \quad z = \frac{m^+ - m^-}{h} \]

\[\bar{m} = m + \frac{\alpha^+(h) + \alpha^-(h)}{2}v + O(h^2), \quad z = v + O(h) \]
\[\mathcal{M} = \mathbb{R}^k, \quad \psi(h, t, (m, v)) \equiv m + tv + O(h^2) \]

\[m^- = m + \alpha^-(h)v + O(h^2), \quad m^+ = m + \alpha^+(h)v + O(h^2) \]

\[h = 0 : \quad m^- = m, \quad m^+ = m \]

\[\tilde{m} = \frac{m^+ + m^-}{2}, \quad z = \frac{m^+ - m^-}{h} \]

\[\tilde{m} = m + \frac{\alpha^+(h) + \alpha^-(h)}{2}v + O(h^2), \quad z = v + O(h) \]

\[h = 0 : \quad \tilde{m} = m, \quad z = v \]
Discretizations of tangent bundles

A discretization of a Lagrangian system $L: TQ \to \mathbb{R}$ is a tuple $(L_h, \psi, \alpha^+, \alpha^-)$ where $(\psi, \alpha^+, \alpha^-)$ is a discretization of TQ and $L_h: TQ \to \mathbb{R}$ is a function such that

$$L_h(v_q) = \int_{\alpha^-(h)}^{\alpha^+(h)} L \circ \frac{\partial \psi}{\partial t}(h, t, v_q) \, dt + O(h^2).$$

A discrete Lagrangian system is a tuple $(L_d, \partial^+, \partial^-, \mathcal{V}, Q)$ where $L_d: \mathcal{V} \to \mathbb{R}$ and $(\mathcal{V}, \partial^+, \partial^-)$ is a discrete tangent bundle on $Q.$
The variational technology in

The variational technology in

- identifies the symplectic form
The variational technology in

- identifies the symplectic form
- proves symplecticity of the discrete flow
The variational technology in

J. E. Marsden, G. W. Patrick, and S. Shkoller [1998].

- identifies the symplectic form
- proves symplecticity of the discrete flow
- identifies the momentum
The variational technology in

- identifies the symplectic form
- proves symplecticity of the discrete flow
- identifies the momentum
- proves conservation of momentum
The variational technology in

• identifies the symplectic form
• proves symplecticity of the discrete flow
• identifies the momentum
• proves conservation of momentum

\[\theta_L^-(\nu) = -dL(\nu) T \pi^-, \quad \theta_L^+(\nu) = dL(\nu) T \pi^+, \]

\[d\theta_L^+ = -d\theta_L^- = -\omega_L \]

\[J^\xi = \iota_\xi \nu \theta_L^+ \]
Given \(w_1 = (q_1, v_1) \in TQ \) solve, for \(w_2 = (q_2, v_2) \in T\hat{Q} \), the equations

\[
DL_h(w_1) = \lambda^- D\hat{\theta}_h^- (w_1) + \mu D\hat{\theta}_h^+ (w_1) + \nu_1^- [Dg(q_1), 0] + \nu_2^- [D^2g(q_1)v_1, Dg(q_1)]
\]

\[
DL_h(w_2) = \lambda^+ D\hat{\theta}_h^+ (w_2) - \mu D\hat{\theta}_h^- (w_2) + \nu_1^+ [Dg(q_2), 0] + \nu_2^+ [D^2g(q_2)v_2, Dg(q_2)]
\]

\[
\bar{q} = \hat{\theta}_h^+(w_1) + Dg(\bar{q})^T \bar{\theta}_1, \quad \bar{q} = \hat{\theta}_h^-(w_2) + Dg(\bar{q})^T \bar{\theta}_2
\]

\[
g(\bar{q}) = 0
\]

\[
\lambda^- Dg(q_1^-)^T = 0, \quad \lambda^+ Dg(q_2^+)^T = 0 \quad \mu Dg(\bar{q})^T = 0
\]

\[
g(q_2) = 0, \quad Dg(q_2)v_2 = 0
\]

\[
g(q_1^-) = 0, \quad g(q_2^+) = 0
\]

\[
q_1^- = \hat{\theta}_h^- (w_1) + Dg(q_1^-)^T \theta^-, \quad q_2^+ = \hat{\theta}_h^+(w_2) + Dg(q_2^+)^T \theta^+
\]

Lagrange multipliers \(\lambda^-, \lambda^+, \mu \)

Lagrange multipliers \(\nu_1^+, \nu_2^+, \nu_1^-, \nu_2^- \)

Time advanced state \((q_2, v_2) \in TQ \)

Midpoint \(\bar{q} \)

Variables \(\bar{\theta}_1, \bar{\theta}_2, \theta^-, \theta^+ \)

Variables \(q_1^-, q_2^+ \)

\[8N + 8r\]
$L : TQ \rightarrow \mathbb{R}, \ \psi(h, t, v_q), \ L_d = \int_{\alpha^-(h)}^{\alpha^+(h)} L \left(\frac{\partial \psi}{\partial t}(h, t, v_q) \right) dt + O(h^2)$
\[L: TQ \rightarrow \mathbb{R}, \ \psi(h, t, v_q), \ L_d = \int_{\alpha^-(h)}^{\alpha^+(h)} L \left(\frac{\partial \psi}{\partial t}(h, t, v_q) \right) \ dt + O(h^2) \]

Want: for small enough \(h \), for all \(v \) there is a unique \(\tilde{v} \) such that

\[dL_d(v)\delta v + dL_d(\tilde{v})\delta v = 0, \]
\[\partial^+(v) = \partial^-(\tilde{v}), \]
\[T \partial^- \delta v = 0, \quad T \partial^+ \delta \tilde{v} = 0, \quad T \partial^+ \delta v = T \partial^- \delta \tilde{v} \]
L: $TQ \to \mathbb{R}$, $\psi(h, t, v_q)$, $L_d = \int_{\alpha^-(h)}^{\alpha^+(h)} L \left(\frac{\partial \psi}{\partial t}(h, t, v_q) \right) dt + O(h^2)$

Want: for small enough h, for all v there is a unique \tilde{v} such that

$$dL_d(v)\delta v + dL_d(\tilde{v})\delta v = 0,$$

$$\partial^+(v) = \partial^-(\tilde{v}),$$

$$T\partial^- \delta v = 0, \quad T\partial^+ \delta \tilde{v} = 0, \quad T\partial^+ \delta v = T\partial^- \delta \tilde{v}$$

Must be a perturbative proof at $h = 0$.
\[L: \mathcal{T}Q \rightarrow \mathbb{R}, \quad \psi(h, t, \nu_q), \quad L_d = \int_{\alpha^-(h)}^{\alpha^+(h)} L \left(\frac{\partial \psi}{\partial t} (h, t, \nu_q) \right) dt + O(h^2) \]

Want: for small enough \(h \), for all \(\nu \) there is a unique \(\tilde{\nu} \) such that

\[
dL_d(\nu) \delta \nu + dL_d(\tilde{\nu}) \delta \nu = 0, \\
\partial^+ (\nu) = \partial^- (\tilde{\nu}), \\
T \partial^- \delta \nu = 0, \quad T \partial^+ \delta \tilde{\nu} = 0, \quad T \partial^+ \delta \nu = T \partial^- \delta \tilde{\nu}
\]

Must be a perturbative proof at \(h = 0 \).

But \(h = 0 \) this problem is badly degenerate:

\[
h = 0 : \quad \partial^- (\nu_q) = \partial^+ (\nu_q) = q, \quad L_d = 0
\]

Discrete existence and uniqueness
Blow up the variational principle at $h = 0$.

$$S_d(v, \tilde{v}) = L(v) + L(\tilde{v}), \quad v, \tilde{v} \in T_q Q,$$

$$\frac{v + \tilde{v}}{2} = z_q$$

Nondegenerate if L is hyperregular and the solution is $v_q = \tilde{v}_q = z_q$.
Blow up the variational principle at $h = 0$.

\[S_d(v, \tilde{v}) = L(v) + L(\tilde{v}), \quad v, \tilde{v} \in T_q Q, \]
\[\frac{v + \tilde{v}}{2} = z_q \]

Nondegenerate if L is hyperregular and the solution is $v_q = \tilde{v}_q = z_q$.

Semiglobal inverse function theorem; tubular neighbourhood.
Want: if $\psi, \tilde{\psi}$ and L_d, \tilde{L}_d match to order r, then F, \tilde{F} match to order ψ.
Want: if $\psi, \tilde{\psi}$ and L_d, \tilde{L}_d match to order r, then F, \tilde{F} match to order ψ.

Easy: $\tilde{F} = F + \mathcal{O}(h^{r-1})$. Its $r - 1$ because of a division by h in the blow-up.
Want: if $\psi, \tilde{\psi}$ and L_d, \tilde{L}_d match to order r, then F, \tilde{F} match to order ψ.

Easy: $\tilde{F} = F + O(h^{r-1})$. Its $r - 1$ because of a division by h in the blow-up.

Difficult: $\tilde{F} = F + O(h^r)$.
Want: if $\psi, \tilde{\psi}$ and L_d, \tilde{L}_d match to order r, then F, \tilde{F} match to order ψ.

Easy: $\tilde{F} = F + O(h^{r-1})$. Its $r - 1$ because of a division by h in the blow-up.

Difficult: $\tilde{F} = F + O(h^r)$.

- F, \tilde{F} are obtained from graphs $\Gamma, \tilde{\Gamma}$.

$\tilde{\Gamma} = \Gamma + O(h^{r-1})$

$rsd(r)(v, \tilde{v})$ is symmetric. It affects the graphs symmetrically.

That does not affect the maps.
Want: if $\psi, \tilde{\psi}$ and L_d, \tilde{L}_d match to order r, then F, \tilde{F} match to order ψ.

Easy: $\tilde{F} = F + O(h^{r-1})$. Its $r - 1$ because of a division by h in the blow-up.

Difficult: $\tilde{F} = F + O(h^r)$.

- F, \tilde{F} are obtained from graphs $\Gamma, \tilde{\Gamma}$.
- $\Gamma = \tilde{\Gamma} + O(h^{r-1})$
Want: if $\psi, \tilde{\psi}$ and L_d, \tilde{L}_d match to order r, then F, \tilde{F} match to order ψ.

Easy: $\tilde{F} = F + O(h^{r-1})$. Its $r - 1$ because of a division by h in the blow-up.

Difficult: $\tilde{F} = F + O(h^r)$.
- F, \tilde{F} are obtained from graphs $\Gamma, \tilde{\Gamma}$.
- $\Gamma = \tilde{\Gamma} + O(h^{r-1})$
- $\Gamma = \tilde{\Gamma} + \text{rsd}^r(v, \tilde{v})$
Want: if $\psi, \tilde{\psi}$ and L_d, \tilde{L}_d match to order r, then F, \tilde{F} match to order ψ.

Easy: $\tilde{F} = F + O(h^{r-1})$. Its $r - 1$ because of a division by h in the blow-up.

Difficult: $\tilde{F} = F + O(h^r)$.

- F, \tilde{F} are obtained from graphs $\Gamma, \tilde{\Gamma}$.
- $\Gamma = \tilde{\Gamma} + O(h^{r-1})$
- $\Gamma = \tilde{\Gamma} + \text{rsd}^r(v, \tilde{v})$
- $\text{rsd}^r(v, \tilde{v})$ is symmetric. It affects the graphs symmetrically. That does not affect the maps.