Outline: Discrete Logarithm Problem

Jonathan Lee

July 10, 2002

1 Preliminaries

- definitions: suppose $G = \langle \gamma \rangle$
 - order of $\alpha \in G$: $\min \{ x \in \mathbb{Z}^+ : \gamma^x = \alpha \}$
 - exponent of G: $\min \{ x \in \mathbb{Z}^+ : g^x = 1 \forall g \in G \} = \text{lcm} \{ \text{ord}_g 1 : g \in G \}$

- generalized discrete logarithm problem for infinite cyclic groups generally applies in non-cryptographic contexts (harder for curves)

2 Silver-Pohlig-Hellman method

- reduces problem to subproblems in group’s prime decomposition ($\gcd(n, m) = 1 \iff C_{nm} = C_n \times C_m$)
 - subproblem: finding $\text{ord}_{\gamma^p} \alpha_p$, where $\gamma_p = \gamma^{n/p} \cdot \alpha_p = \alpha^{n/p} \cdot \gamma$ (notice: $\text{ord}_{\gamma^p} \gamma = p^e$)
 - determine $x, x \equiv \text{ord}_{\gamma} \alpha \mod p^e$ for all p (note that for all p: $1 = \gamma_p^{x_p} \cdot \alpha_p = (\gamma^{x} \cdot \alpha)^{n/p}$)

- further reduction from prime-power-order groups to prime-order groups
 - suppose $|G| = p^e$, and let $\sum_{i=0}^{e-1} x_i p_i$ be the base-p expansion of $\text{ord}_{\gamma} x$
 - defining $a_i = \gamma^{-\sum_{k=0}^{i} x_k p_k}$, we obtain $(\gamma^{p^{e-1}})^{x_i} = a_i^{p^{e-i-1}}, 0 \leq i \leq e - 1$

- actual algorithm - reduce to prime-power case (Chinese Remainder Theorem), reduce to prime case (Lagrange’s Theorem / Fermat’s Little Theorem), solve (Baby-Step, Giant Step / ρ-algorithm)
 - runtime: $O \left(\sum_{p^{e} \mid |G|} (e_p (\log |G| + \sqrt{p})) \right)$
 - works best with small prime factors (Mersenne primes advantageous)

3 Index Calculus Method

- more suited to prime-powered groups, ie. \mathbb{F}_{p^n}
- re-introduction of factor bases
 - note that if $\alpha = \prod_i \alpha_i$, then $\text{ord}_{\gamma} \alpha \equiv \sum_i \text{ord}_{\gamma} \alpha_i \mod |G|$
 - compute $\text{ord}_{\gamma} v$ for v in factor base
 - take exponent vectors for $\{ \alpha_i \}$, note that $t \equiv \sum_i \text{ord}_{\gamma} \alpha_i \alpha_i^e \mod |< \gamma >|$
 - acquire independent set of $| \{ v \} |$ relations, solve to obtain $\text{ord}_{\gamma} v$

- determine $\text{ord}_{\gamma} \alpha$
find t so that $\alpha \gamma^t$ is smooth

factor and obtain $\text{ord}_{\alpha} \equiv \sum_i \text{ord}_{\gamma_i}(\alpha\gamma_i) \cdot e_i - t \mod |\gamma|