THE BOOLEAN SPACE OF \mathbb{R}-PLACES
Katarzyna Osiak

An \mathbb{R}-place of a formally real field K is a place $\xi : K \to \mathbb{R} \cup \{\infty\}$. The set of all \mathbb{R}-places of the field K is denoted by $M(K)$. Every \mathbb{R}-place of K is connected with some subset of the space $X(K)$ of orderings of the field K. Namely, if ξ is an \mathbb{R}-place, then there exists an ordering P such that the set

$$A(P) := \{ a \in K : \exists q \in \mathbb{Q}^+ (q \pm a \in P) \}$$

is the valuation ring of ξ. We say that P determines ξ in this case. Any ordering P of the field K determines exactly one \mathbb{R}-place.

The above described correspondence between orderings and \mathbb{R}-places defines a surjective map

$$\lambda_K : X(K) \to M(K),$$

which, in turn, allows us to equip $M(K)$ with the quotient topology inherited from $X(K)$. $M(K)$ is a Hausdorff space. It is also compact as a continuous image of a compact space. But the problem

Which compact, Hausdorff spaces occur as spaces of real places?

is still open.

We prove that every Boolean space is a space of \mathbb{R}-places of some formally real field K.